
フーリエ級数
A.数学的基礎

A1.三角関数の直交性

I m, n=∫
−π

π

cosm t cos n t d t={
2π (m=n=0)
π (m=n≠0)
0 (m≠n) } J m, n=∫

−π

π

sinmt sin n t d t={
2π (m=n=0)
π (m=n≠0)
0 (m≠n) }

K m, n=∫
−π

π

sinmt cos n t d t=0

 

[計算 1] sinm(−t)cosn (−t )=−sin mt cosn t より奇関数だから K m, n=0

[計算 2] I 0, 0=J 0,0=∫
−π

π

1dt=2 π

[計算 3] n が n≠0 なる整数の時

∫
−π

π

cos n t d t=
1
n

[sin n t ]−π
π

=0 ∫
−π

π

sin n t d t=
1
n
[−cosn t ]−π

π
=
1
n
(−(−1)n+(−1)n)=0 ・・・(1-1)

n>0 の時(1-1)より I 0,n=I n ,0=∫
−π

π

cos n t d t=0 J 0,n= J n ,0=∫
−π

π

sin n t d t=0

[計算 4]

m+n>0 の時(1-1)より 0=∫
−π

π

cos(m+n) t d t=∫
−π

π

(cosm t cos n t – sin mt sin n t)d t

→ I m, n=∫
−π

π

cosmt cosn t d t=∫
−π

π

sic mt sic n t d t=J m, n  

積和と積差の公式
   cos(α+β)=cosα cos β – sinα sin β
+) cos(α−β )=cos αcos β+sin αsin β
cos (α+β )+cos (α – β)=2cos αcos β

 より

I m, n=∫
−π

π

cosmt cosn t d t=
1
2
∫
−π

π

(cos(m+n) t)+cos(m−n) t d t={
1
2
(0+2 π) (m=n)

1
2
(0+0) (m≠n)}={π (m=n)

0 (m≠n)}
A2.複素数と共役 a ,b は実数、 i は虚数 (i2=−1) 、 z=a+b i は複素数 であり、共役 z=a−b i 、

実部 ℜ(z )=a 、虚部 ℑ(z )=b z+ z=2ℜ(z ) , z – z=2i ℑ( z) , z z=∣z∣2

A3．オイラーの公式 e i θ=cosθ+i sinθ
加法定理より

e i αe i β=e i(α+ β )
⇔ (cos α+i sinα)(cos β+i sin β)=cos(α+β)+isin (α+β )

e i α

e i β
=ei (α−β )

⇔
cosα+i sin α
cos β+i sin β

=cos (α−β )+i sin (α−β )

(e i θ)n=ei nθ ⇔ (cosθ+i sin θ )
n
=cos nθ+i sin nθ

e i θ=e−i θ ⇔ cosθ+i sin θ=cosθ−i sinθ=cos(−θ)+isin (−θ)
(応用)

ei θ – e−i θ
=2 isin θ ⇔ e i θ –e−i θ

=ei θ – ei θ=2 i ℑ(ei θ)=2 isin θ

ei θ−1=2 isin
θ
2
e
i
θ
2 ⇔ e i θ−1=e

i θ
2 e

i θ
2 −e

−
i θ
2 e

i θ
2 =(e

i θ
2 −e

−
i θ
2 )e

i θ
2 =2 i sin

θ
2
e
i θ
2

ei α– e i β=2 i sin
α−β
2

e
α+ β
2 ⇔ e i α –e i β=(ei (α−β)

−1)e i β=2 i sin
α−β
2

e
α−β
2 e i β=2 isin

α−β
2

e
α+ β
2

 ・・・(3-1)
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A4. 関数(ディリクレ核) Dn ( t)=
1
2
+∑
k=1

n

cos k t → En(t )=∑
k=0

n−1

Dk (t ) と定義する。

Dn( t)=
sin(n+

1
2
)t

2sin
t
2

・・(4-1) En(t )=
sin2

n t
2

2sin2
t
2

・・(4-2) ∫
−π

π

Dn(t)d t=π ・・(4-3) ∫
−π

π

E n(t)d t=nπ ・・(4-4)

 [計算1]次の式を導く

∑
k=1

n

(e i t)k−1=
sin

n t
2

sin
t
2

e
i
(n−1)t
2  ・・・(1) ∑

k=1

n

(e i k t)=
sin

n t
2

sin
t
2

e
i
(n+1 )t
2  ・・・(2)

等比数列の和の公式と(3-1)から ∑
k=1

n

(e i t)k−1=
e i n t−1

e i t−1
=

2 i sin
n t
2
e
i n t
2

2 i sin
t
2
e
i t
2

=

sin
n t
2

sin
t
2

e
i
(n−1)t
2 →(1)

→ ∑
k=1

n

ei k t=∑
k=1

n

(e i t)k=ei t∑
k=1

n

(ei t)k−1=
sin

nt
2

sin
t
2

e
i
(n−1)t
2 e i t =

sin
n t
2

sin
t
2

e
i
(n+1)t
2 →(2)

[計算 2]

(3-1)より(4-3)分子式は sin
n t
2
e
i(n+1)t
2 =

1
2 i

(2 isin
n t
2
e
i n t
2 )e

i t
2=−

i
2
(e i n t−1)e

i t
2=−

i
2
(e

i (n+ 1
2
)t

−e
i t
2 ) 　

∴ ∑
k=1

n

ei k θ=
i
2

cos(n+
1
2
)θ−cos

θ
2

sin
θ
2

+

sin(n+
1
2
)θ

2sin
θ
2

−
1
2

実部の相当性から ∑
k=1

n

cosk θ=
sin (n+

1
2
)θ

2sin
θ
2

−
1
2

以上を整理して Dn( t)=
1
2
+∑

k=1

n

cos k t=
sin(n+

1
2
)t

2sin
t
2

→(4-1)

[計算 3] 積差公式
   cos(α+β)=cosα cos β – sinα sin β
-) cos(α−β )=cos αcos β+sin αsin β
cos (α+β )−cos (α – β )=−2sinαsin β

より sin(k+
1
2
) t ˙sin

t
2
=
cos k t−cos(k+1) t

2

→

→ ∑
k=0

n−1

Dk ( t)=∑
k=0

n−1 sin (k+
1
2
) t sin

t
2

2sin2
t
2

=
1

2sin2
t
2

∑
k=0

n−1
cos nt –cos (n+1)t

2
=

1

2sin2
t
2

1 – cosn t
2

=

sin2
n t
2

2sin2
t
2

→(4-2)

(1-1)より ∫
−π

π

Dn(t)d t=∫
−π

π
1
2
d t+∑

k=1

n

∫
−π

π

cos k t d t=
2 π
2

+0=π  →(4-3)→ ∫
−π

π

E n(t)d t=∫
−π

π

∑
k=0

n –1

D k (t )d t=nπ

[計算 4] 直交性から ∫
−π

π

Dn(t)cos k ( t)d t={∫−π
π

cos2 k t d t=π (1≤k≤n)

0 k>n
} ∫

−π

π

Dn(t)sin k t d t=0  

∫
−π

π

Dn
2
(t)d t=∫

−π

π

(
1
2
+∑

k=1

n

cos k t)
2

d t=∫
−π

π

(
1
4
+∑

k=1

n

cos2 k t)d t=
1
4
2 π+nπ=(n+

1
2
)π  

∴ E2n+1(t)=∑
k=0

2 n

Dk (t )= ∑
k=0

2n+1−1

Dk ( t)=2
sin2(n+

1
2
) t

(2sin
t
2
)
2 =2Dn

2(t )  
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B.フーリエ級数

B1.微分積分学  フーリエ級数の収束の証明において大学課程の微分積分学の定理を使っている。

(1) 数列 an  が単調増加かつ有界ならば収束する。

(2) lim
n→∞

∑
k=1

n

a k  が収束するならば lim
n→∞

an=0  

(3) 数列 an が収束するならば lim
n→∞

an= lim
n→∞

1
n
∑
k=1

n

an

(4) f (x ) は閉区間で連続ならば積分可能かつ有界かつ一様連続。

  ●ある M>0 が存在して、すべての x について ∣ f ( x)∣≤M

  ●すべての ε>0 に対してある δ>0 が存在し[すべての x について ∣h∣<δ → ∣ f ( x+h)− f ( x)∣<ε ]

(6) 関数が微分可能なら連続である。

(7) f n(x ) が積分可能かつ一様収束するならば、 lim
n→∞

∫
a

b

f n(x)d x=∫
a

b

lim
n→∞

f n( x)d x

(8) 閉区間[a , b]で連続な f (x ) が f (x )≥0 かつ ∫
a

b

f (x )d x=0 ならば恒等式 f (x )=0  

[(8) の証明] a≤x≤b とする。 f (x )≥0 より

 0≤∫
a

x

f ( t)d t≤∫
a

x

f ( t)d t+∫
x

b

f ( t)d t=∫
a

b

f (t )d t=0 → ∫
a

x

f (t)d t=0 → f (x )=
d
d x

∫
a

x

f (t)d t=0

B2.フーリエ級数の定義

実数全体で定義された f (x ) について次の条件をこの稿において終始仮定する。

●周期 2π を持つ。つまりすべての実数 x と整数 n について ( f (x+2nπ )= f (x))

●任意の閉区間で積分可能。

この時、フーリエ級数 cn(x ) を次式で定義する。

(n≥0) an=
1
π
∫
−π

π

f (t)cos n t d t bn=
1
π
∫
−π

π

f (t )sin n t d t cn(x )=
a0
2

+∑
k=1

n

(ak cos k x+bksin k x) …(B-1)

B3.関数 f ( x ) についての条件

● f (x ) が微分可能でその導関数が連続な時、「なめらか」という。

●閉区間内の f (x ) の不連続な x が有限個であり、それを x1, x2 ,⋯ , xn とする。

f (a−0)= lim
x→a−0

f ( x) f (a+0)= lim
x→a+0

f (x ) と定義した記号のもとで

k=1,2,⋯, n で f (xk−0) , f (xk+0) が存在するならば、 f (x ) は「区分的に連続」という。

●閉区間内で導関数が区分的に連続ならば、 f (x )' f (x ) を「区分的になめらか」という。

B4.フーリエ級数の収束

● f (x ) が周期 2π かつ、区分的になめらかな関数ならば lim
n→∞

cn(x )={
f ( x) xで連続

f ( x+0)+ f ( x−0)
2

xで不連続 }
● f (x ) が周期 2π をもち、閉区間[-π, π]で連続ならば lim

n→∞

1
n
∑
k=0

n−1

ck ( x)= f ( x)  (一様収束)

[証明STEP] フーリエ級数の収束を次の段階で証明する。

STEP-1 f (x ) が周期 2π かつ積分可能ならば ∫
−π+a

π+a

f (x )d x=∫
−π

π

f ( x)d x  (積分区間のスライド)

STEP-2 f (x ) が周期2πかつ積分可能ならば cn(x )=
1
π
∫
−π

π

f (u+x )Dn(u)d u

STEP-2 f (x ) が周期2πかつ積分可能ならば cn(x )− f ( x)=
1
π
∫
−π

π

( f (t+x )− f ( x))D n(t)d t 　

STEP-4 f (x ) が周期2πかつ積分可能ならば ∫
−π

π

cn( x) f (x )d x=∫
−π

π

cn
2
(x)d x  　
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STEP-5 f (x ) が周期2πかつ積分可能ならば lim
n→∞

∫
−π

π

cn
2(t)d t= lim

n→∞

a0
2

2
+∑

k=1

n

(ak
2+bk

2) は収束する。

これより[リーマン・ルベーグの定理] lim
n→∞

an= lim∫
−π

π

f (t)cos n t d t=0 lim
n→∞

bn=lim∫
−π

π

f ( t)sin n t d t=0

STEP-6 f (x ) が閉区間[-π, π]でなめらかならば lim
n→∞

cn(x )= f (x ) (フーリエ級数の収束)

STEP-7 f (x ) が閉区間[-π, π]で区分的になめらかならば lim
n→∞

cn(x )=
f (x+0)+ f ( x−0)

2

STEP-8 f (x ) が閉区間[-π, π]で連続ならば lim
n→∞

1
n
∑
k=0

n−1

ck ( x)= f ( x)  (一様収束)

[STEP-1 証明] 2π の周期性から ∫
π

π+a

f ( x)d x= ∫
π –2π

π+a−2π

f ( x)d x= ∫
– π

−π+a

f ( x)d x

→ ∫
−π+a

π+a

f (x )d x= ∫
−π+a

π

f (x )d x+∫
π

π+a

f ( x)d x= ∫
−π+a

π

f ( x)d x+ ∫
–π

−π+a

f (x )d x=∫
−π

π

f (x)d x  

[STEP-2 証明] n≥1 の時

an cos n x+bnsin n x=
1
π
∫
−π

π

f ( t)(cos n t cos n x+sin n t sinn x)d t=
1
π
∫
−π

π

f ( t)cosn( t−x)d t  

∴ cn(x )=
a0
2

+∑
k=1

n

(ak cos k x+bksin k x)=
1
π
∫
−π

π

f (t)(
1
2
+∑

k=1

n

cos n(t−x))d t=
1
π
∫
−π

π

f (t )Dn( t−x)d t   

u=t – x  の変数変換と[STEP-1]により =
1
π

∫
−π−x

π−x

f (u+ x)Dn(u)d u=
1
π
∫
−π

π

f (u+x )D n(u)d u  

[STEP-3 証明]
1
π
∫
−π

π

D n(t)d t=1 より cn(x )– f (x )=
1
π
∫
−π

π

( f (t+x )– f (x ))Dn( t)d t  (B-2)

[STEP-4 証明] 定義から

1
π
∫
−π

π

f ( x)cn(x )d x=
1
π
∫
−π

π

f ( x)(
a0
2

+∑
k=1

n

(ak cos k x+bk sin k x ))d x

=
a0
2
1
π
∫
−π

π

f ( x)d x+∑
k=1

n

(ak
1
π
∫
−π

π

f (x )cos k x d x+bk
1
π
∫
−π

π

f (x)sin k x d x)=
a0
2

2
+∑

k=1

n

(ak
2
+bk

2
)

 ・・・(1)

三角関数の直交性から

∫
−π

π

cn
2
( t)d t=∫

−π

π

(
a0
2

+∑
k=1

n

(ak cos k t+bk sin k t))
2

d t=(
a0
2

)
2

∫
−π

π

d t+∑
k=1

n

(ak
2∫
−π

π

cos2 k t d t+bk
2∫
−π

π

sin2 k t d t)

=(
a0
2

)
2

2π+∑
k=1

n

(ak
2π+bk

2π )=π (
a0
2

2
+∑

k=1

n

(ak
2
+bk

2
))

・・・(2)

(1) (2) から ∫
−π

π

cn( x) f (x )d x=∫
−π

π

cn
2
(x )d x=π (

a0
2

2
+∑

k=1

n

(ak
2
+bk

2
))

[STEP-5] An=∫
−π

π

cn
2
(x )d x=π (

a0
2

2
+∑

k=1

n

(ak
2
+bk

2
)) は単調増加。

0≤∫
−π

π

( f (t) – cn(t))
2d t=∫

−π

π

( f (t))2d t – 2∫
−π

π

f (t )cn( t)d t+∫
−π

π

cn
2
(t)d t=∫

−π

π

( f (t))2d t –∫
−π

π

cn
2
(t)d t

∫
−π

π

( f (t))2d t≥∫
−π

π

cn
2
(t)d t π lim

n→∞
(
a0
2

2
+∑

k=1

n

(ak
2
+bk

2
)) [ベッセルの不等式]→ An は有界

→ lim
n→∞

∫
−π

π

cn
2
(t)d t=π lim

n→∞
(
a0
2

2
+∑

k=1

n

(ak
2
+bk

2
)) は収束する。→ lim

n→∞
(an

2
+bn

2
)=0

→ lim
n→∞

an= lim∫
−π

π

f (t)cos n t d t=0  lim
n→∞

bn=lim∫
−π

π

f ( t)sin n t d t=0 [リーマン・ルベーグの定理]
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[STEP-6 証明]　次のリーマン・ルベーグの定理を使う。

f (x ) が周期 2π かつ積分可能ならば lim
n→∞

∫
−π

π

f ( t)cosn t d t= lim
n→∞

∫
−π

π

f (t)sin n t d t=0

→ lim
n→∞

∫
−π

π

f ( t)sin (n+
1
2
) t d t= lim

n→∞
∫
−π

π

( f (t)cos
t
2
)sinn t d t+ lim

n→∞
∫
−π

π

( f (x )sin
t
2
)cos n x d t=0  

f (x ) がなめらか。すなわち微分可能でその導関数が連続とする。 F x (t)=
f ( x+t)− f ( x)

2sin
t
2

と定義して

cn(x )− f ( x)=∫
−π

π

( f (x+t )− f (x ))D n( t)d t=∫
−π

π

( f (x+ t)− f ( x))
sin(n+

1
2
)t

2sin
t
2

d t

=∫
−π

π
f ( x+t)− f (x)

2sin
t
2

sin(n+
1
2
)t d t=∫

−π

π

F x (t)sin(n+
1
2
)t d t

 

F x (t) は t (t≠0) について連続である。 F x (0) は未定義だが、 f (x ) の微分可能性からこれを

lim
t→0

F x (t)=lim
t →0

f (x+t)− f ( x)

2sin
t
2

=lim
t→0

f ( x+t)− f (x )
t

t
2

2sin
t
2

= f ( x)'×1  で定義すれば t=0 でも連続。

lim
n→∞

(cn( x)− f (x))=lim ∫
−π

π

F x (t )sin n t d t=0 → lim
n→∞

cn(x )= f (x )

[STEP-7 証明]

不連続点にまで拡張するために F x (t)={
1
2
( f ( x+t)+ f ( x−t)) (t≠0)

1
2
( f ( x+0)+ f ( x−0)) ( t=0)} と定義する。

f (x+0) , f ( x−0) は極限値であり、代入ではないことに注意する。

x が f (x ) の不連続点でも f (x ) が区分的になめらかなので、 t≠0 において F x (t)  はなめらか。

lim
t→0

F x (t)=
1
2
( f ( x+0)+ f (x−0))=F x (0) t=0 で F x (t) は連続。

F_x(t) ' =  1 over 2 ( f( x + t ) ' + f( x - t) ' )　 lim
h→0+

f (x+h)'= f ( x+0)' lim
h→0−

f ( x+h) '= f (x−0)' より

lim
t→0

F x (t) '=lim
t→0

1
2
( f (x+t) '+ f ( x−t) ' )=

1
2
( f ( x+0)'+ f (x−0) ')=F x (0) ' t=0 で F x (t) ' も連続。

→ t=0 においても F x (t) はなめらか。よって STEP-6 により lim
n→∞

∫
−π

π

F x (t+0)Dn(t)d t=F x (0)

F x (−t)=
1
2
( f (x−t)+ f ( x+t))=F x (t) より t に関して偶関数である。 

∫
−π

π

F x( t)Dn(t)d t=2∫
0

π

F x (t )Dn(t)d t=∫
0

π

f (x+t)Dn(t)d t+∫
0

π

f ( x−t)D n(t )d t

変数変換 t=−u  より Dn( t) が偶関数だから

∫
0

π

f (x−t)Dn(t )d t=−∫
0

−π

f (x+u)Dn(−u)d u=∫
−π

0

f (x+u)Dn(u )d u

∫
−π

π

F x( t)Dn(t)d t=∫
−π

π

f (x+t)Dn(t)d t 　

lim
n→∞

cn(x )= lim
n→∞

∫
−π

π

f ( x+t)D n( t)d t= lim
n→∞

∫
−π

π

F x( t+0)D n(t )d t=F x (0)=
f (x+0)+ f (x−0)

2
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[STEP-8 証明] S n( x)=
1
n
∑
k=0

n−1

ck とする。

S n( x)=
1
n
∑
k=0

n−1

ck=
1
n
∑
k=0

n−1
1
π
∫
−π

π

f (t+x )Dn(t)d t=
1
nπ

∫
−π

π

f ( t+ x)∑
k=0

n−1

Dn(t)d t=
1
nπ

∫
−π

π

f (t+x )En( t)d t

1
nπ

∫
−π

π

En(t)d t=1 より S n( x)− f ( x)=
1
nπ

∫
−π

π

( f (t+ x)– f (x ))En(t )d t 　

f (x ) は閉区間で連続だから一様連続。

すべての ε>0 に対して x に無関係にある δ>0 が定まり[ ∣t∣<δ  ならば ∣ f (t+ x)− f ( x)∣<ε ]

積分区間を [−π ,π ]={t  ∣ ∣t∣<δ}∪{t  ∣ ∣t∣≤δ} に分割して

P=∫
∣t∣<δ

( f (t+ x)– f (x ))En(t )d t Q= ∫
∣δ∣≤0

( f ( t+x) – f ( x))E n(t)d t とおく。 En(t )=
sin2

n t
2

2sin2
t
2

≥0 だから

∣P∣=∣∫
–δ

δ

( f (t+x )– f (x ))En(t)d t∣≤∫
–δ

δ

∣ f (t+x )– f (x )∣En(t)d t≤∫
–δ

δ

ε En(t)d t≤ε∫
– π

π

En(t)d t=nπ ε 　

f (x ) は閉区間で連続だから有界であり、 ∣ f ( x)∣<M  となる M が存在する。

 ∣t∣≥δ  の時 sin2
t
2
≥sin 2

δ
2

 かつ sin2
(n+1)t
2

≤1 より En(t )=
sin2

(n+1) t
2

2sin2
δ
2

≤
1

2sin2
δ
2

 

∣Q∣= ∫
∣δ∣≥0

∣( f (t+x )− f (x ))∣En( t )d t≤∫
∣δ∣≥0

M
1

2sin2
δ
2

d t=2∫
δ

π
M

2sin2
δ
2

d t=
M (π – δ)

sin2
δ
2

　

∣S n(x) – f ( x)∣≤
1
nπ

(∣P∣+∣Q∣)≤
1
n π (nπε+

M (π−δ)

sin2
δ
2 )≤ε+

1
n
M (π−δ )

π sin 2
δ
2

これは x に無関係に成立。

∴ lim
n→∞

S n(x )= f (x ) (一様収束)

 [試論としての補足計算]　 cn(x ) が一様収束するならば微分可能性の仮定がなくても lim
n→∞

cn(x )= f (x ) が成立。

f (x ) の連続性や積分可能性だけでは一様収束を結論できない。

STEP-4 より　 ∫
−π

π

S n(x) f (x )d x=
1
n
∑
k=0

n−1

∫
−π

π

ck (x) f (x )d x=
1
n
∑
k=0

n−1

∫
−π

π

ck
2
( x)d x …(1)

STEP-5 より lim
n→∞

∫
−π

π

cn(x )d x は収束するから lim
n→∞

1
n
∑
k=0

n−1

∫
−π

π

ck
2
( x)d x= lim

n→∞
∫
−π

π

cn
2
( x)d x …(2)

lim
n→∞

S n(x )= f (x ) が一様収束だから lim
n→∞

∫
−π

π

S n(x ) f ( x)d x=∫
−π

π

lim
n→∞

S n(x ) f ( x)d x=∫
−π

π

( f ( x))2d x …(3)

(1)(2)(3)より lim
n→∞

∫
−π

π

cn
2
(x )d x=∫

−π

π

( f (x ))2d x …(4)

∫
−π

π

( f (x )−cn( x))
2d x=∫

−π

π

( f ( x))2d x−2∫
−π

π

f (x )cn( x)d x+∫
−π

π

cn
2
(x)d x=∫

−π

π

( f (x ))2d x−∫
−π

π

cn
2
(x )d x …(5)

(4)(5)より lim
n→∞

∫
−π

π

( f (x )−cn( x))
2d x=∫

−π

π

( f ( x))2d x− lim
n→∞

∫
−π

π

cn
2
(x )d x=0  

ここで cn(x ) の一様収束を仮定すれば ∫
−π

π

lim
n→∞

( f (x)−cn(x ))
2d x= lim

n→∞
∫
−π

π

( f (x )−cn( x))
2d x  

∫
−π

π

lim
n→∞

( f (x)−cn(x ))
2d x=0  → lim

n→∞
( f (x )−cn( x))

2
=0 → lim

n→∞
cn(x )= f (x )
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