
常微分方程式方程式の数値解法 R-K 公式の導出（統合版）

常微分方程式の初期値問題
d

d x
y (x )= f (x , y (x )) , y (x0)= y0

Runge の 1 / 6 公式 Kutta の 1 / 8 公式

k 1= f (x , yi)  

k 2= f ( x+
1
2

h , y i+
h
2

k1)

k 3= f ( x+
1
2

h , y i+
h
2

k 2)

k 4= f ( x+h , y i+hk 3)

y i+1= yi+
h
6
(k1+2k 2+2k 3+k4)

k 1= f (x , yi)  

k 2= f ( x+
1
3

h , y i+
h
3

k 1)

k 3= f ( x+
2
3

h , y i+
h
3
(3 k2−k 1))  

k 4= f ( x+h , y i+h(k3 – k 2+k 1))

y i+1= y i+
h
8
(k1+3k 2+3k 3+k 4)

上記の公式を総称して Runge-Kutta (R-K) の公式という。

Runge-Kutta (R-K) の公式の一般形
k 1= f ( x , y)
k 2= f ( x+a2 h , y+b21 k1 h)

k 3= f ( x+a3 h , y+(b31 k 1+b3 2 k 2)h)  
k 4= f (x+a4 h , y+(b41 k1+b4 2 k 2+b4 3 k 3)h)  

(☆) y (x+h)= y (x )+(u1 k 1+u2 k 2+u3 k 3+u4 k4)h+O(h5
)

（☆）を満たす実数（パラメータ） u i(i=1 ,2 ,3 , 4) , a i(i=2 ,3 ,4) , bi j (i=2 ,3 ,4 , j=1,2,⋯i−1) を定め、
ȳ= y (x )+(u1 k1+u2 k 2+u3 k3+u4 k 4)h を y (x+h) の近似解とする。

f (x , y )  は 3 回以上偏微分可能で、 ( ∂
∂ x )(

∂
∂ y )=( ∂

∂ y)(
∂

∂ x) を仮定する。

定義

x i(h)=x+ai h ,  y i= y i(h)= y+h∑
j=1

i−1

bi j k j (i=1 ,2 ,3 ,4) （ただし a1=0 , ∑
j=1

0

=0 ）

k i = k i(h) = f (x i(h) , yi (h)) (i=1 , 2 ,3 ,4)

結果

(D1) k i(0)= f ( x , y)=k 1 , y i(0)= y

微分する変数によって、次の違いがある。

(D2)
d

d h
k 1=

d
d h

f ( x , y( x))=0

(D3)
d

d x
k 1=

d
d x

f (x , y ( x))=( ∂
∂ x

+ y ' ( x)
∂

∂ y) f (x , y (x ))=( ∂
∂ x

+ f ( x , y (x ))
∂

∂ y) f (x , y (x ))

(☆)の解析のため微分積分学の結果を応用する。
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●合成関数の微分
f (x , y )  が全微分可能で x= x(u , v)  , y= y (u , v ) が偏微分可能である時
F (u , v)= f (x (u , v ) , y (u , v )) は u , v について偏微分可能で
∂ F
∂u

= f x (x (u , v) , y (u , v))
∂ x
∂ u

+ f y (x (u , v) , y (u , v))
∂ y
∂u

∂ F
∂v

= f x (x (u , v) , y (u , v))
∂ x
∂ v

+ f y (x (u , v) , y (u , v))
∂ y
∂ v

これは F= f (x , y ) とおいて、
∂ F
∂u

=
∂ F
∂ x

∂ x
∂ u

+
∂ F
∂ y

∂ y
∂u ,

∂ F
∂v

=
∂ F
∂ x

∂ x
∂v

+
∂ F
∂ y

∂ y
∂ v  (連鎖律)とも表す。

f (x , y )  が全微分可能で, x= x( t)  , y= y (t)  が区間 I で微分可能な時、連鎖律により

F ( t)= f (x ( t) , y (t)) は区間 I で微分可能で 
d F
d t

=
∂ f
∂ x

d x
d t

+
∂ f
∂ y

d y
d t

(合成関数の微分)

● t を変数に含む線形作用素
x= x (t) , y= y (t) , f = f (x ( t) , y (t)) とする。 x (n )

, y(n)
は t についての n 階導関数を表す。

∂
∂ x と

∂
∂ y は x(n )

(t) , y(n)
( t) に対して線形性の係数のように作用する。

∂
∂ x

(x(n )(t) f ( x , y))=x(n)(t)( ∂
∂ x

f ( x , y)) ,
∂

∂ y
( x(n)( t) f ( x , y))=x(n )(t)( ∂

∂ y
f (x , y))

,
∂

∂ x
( y(n)( t) f ( x , y))= y(n )(t )( ∂

∂ x
f (x , y )) ,

∂
∂ y

( y(n)(t ) f (x , y ))= y(n)( t)( ∂
∂ y

f ( x , y))
定義

Dt
(n)

= x (n ) ∂
∂ x

+ y(n) ∂
∂ y , Dt

n=∑
i=0

n

C in (x(1) ∂
∂ x )

n– i

( y(1) ∂
∂ y)

i

( Dt , Dt
(n)

は t を変数に含む。)

X =
∂

∂ x , Y =
∂

∂ y とおくと Dt
(n)

= x(n) X + y(n)Y , Dt
n=∑

i=0

n

C in ( x(1) X )n−i( y(1)Y )i

結果

(A1) Dt
(n)

は線形作用素で Dt
(n) ∂

∂ x
=

∂
∂ x

D t
(n)

, Dt
(n) ∂

∂ y
=

∂
∂ y

Dt
(n )

, Dt
(i ) Dt

( j )
=Dt

( j) Dt
(i )

(A2) Dt
(1 )

=Dt

(A3) Dt
n Dt=Dt

n+1

(A4) ( d
d t

Dt
(n )) f =D t

(n+1) f

証明

(A1) a ,b を定数, g=g (x (t ) , y (t)) ,偏微分の線形性から Dt
(n)

(a f +b g ) = a Dt
(n ) f +b Dt

(n )g

→ Dt
(n)

は線形作用素。
∂

∂ x と
∂

∂ y の可換性および x (t) , y (t) に対する線形性により成立する。

(A2) Dt
(1 )

=x(1) X + y(1)Y , Dt=Dt
1=∑

i=0

1

C i1 (x(1) X )
1 – i

( y(1)Y )
i

= x (1) X + y(1)Y → Dt
(1 )

=Dt

(A3) X̄ =x(1) ∂
∂ x , Ȳ = y(1) ∂

∂ y とおくと Dt
n=∑

i=0

n

C in X̄ n−i Ȳ i
, Dt= X̄ +Ȳ

Dt
n Dt=∑

i=0

n

C in X̄ n−i Ȳ i ( X̄ +Ȳ ) = ∑
i=0

n

C in X̄ n+1– i Ȳ i+∑
i=0

n

C in X̄ n– i Ȳ i+1

= ∑
i=0

n

C in X̄ n+1– i Ȳ i+∑
i=1

n+1

C i –1n X̄ n – (i –1) Ȳ i
= X̄ n+1+∑

i=1

n

( C in + C i−1n ) X̄ n+1 – i Ȳ i+Ȳ n+1
= ∑

i=0

n+1

C in+1 X̄ n+1−i Ȳ i

= Dt
n+1

(証明終わり)
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● t による Dt の微分

(B1)
d
d t

(Dt
(n) f )=( d

d t
Dt

(n)) f +Dt
(n )( d

d t
f )

(B2)
d
d t

f =Dt f

(B3)
d
d t

(Dt
(n) f )=(Dt

(n+1)
+D t

(n) Dt) f

(B4)
d
d t

(Dt
n f ) = (Dt

n+1
+n Dt

(2) Dt
n –1

) f  

(B5)
d
d t

(Dt
(i ) Dt

( j ) f ) = (Dt
(i+1)D t

( j)
+Dt

(i )D t
( j+1)

+Dt
(i )Dt

( j) Dt) f

(B6)
d 2

d t2 f = (Dt
2
+Dt

(2)
) f

(B7)
d 3

d t3 f = (Dt
3
+3D t

(2) Dt+Dt
(3)

) f

証明

(B2) 合成関数の微分により 
d f
d t

=
∂ f
∂ x

d x
d t

+
∂ f
∂ y

d y
d t = (x(1) X + y(1)Y ) f = Dt f

(B3) (B2)は f を f x , f y に置き換えても成立するから
d
d t

(Dt
(n) f ) =

d
d t

(x(n) f x+ y(n) f y ) =
d
d t

(x(n) f x)+
d
d t

( y(n) f y)

 = ( d
d t

x(n)) f x+ x(n) d
d t

f x + ( d
d t

y(n)) f y+ y(n) d
d t

f y   = x(n+1 ) f x+ y(n+1) f y+x(n) Dt f x+ y(n) Dt f y

 = (x(n+1) X + y(n+1 )Y ) f +( x(n) Dt X + y(n) Dt Y ) f  = Dt
(n+1) f +( x(n ) X Dt+ y(n)Y Dt) f

 = Dt
(n+1) f +( x(n) X + y(n)Y ) Dt f = (Dt

(n+1)
+D t

(n) Dt) f

(B1) (B3)
d
d t

(Dt
(n) f )=(Dt

(n+1)
+D t

(n) Dt) f かつ(A4) Dt
(n+1) f =( d

d t
Dt

(n)) f かつ(B2) Dt f =
d
d t

f

→
d
d t

(Dt
(n) f )=( d

d t
Dt

(n)) f +Dt
(n )( d

d t
f )

(B5) (B1)により
d
d t

(Dt
(i ) Dt

( j ) f ) = ( d
d t

Dt
(i))(Dt

( j) f )+Dt
(i ) d

d t
( Dt

( j ) f )  

 = Dt
(i+1 )

(Dt
( j ) f )+D t

(i)(( d
d t

Dt
( j)) f +Dt

( j)( d
d t

f ))
 = Dt

(i+1 )
(Dt

( j ) f )+D t
(i)(Dt

( j+1) f +Dt
( j )

(Dt f ))
= (Dt

(i+1)D t
( j)

+Dt
(i )D t

( j+1)
+Dt

(i )Dt
( j) Dt) f

(B4) gn ,i=X n – i Y i f  とおく。

gn ,i=X n−iY i f =X ( X n –1−i Y i f )=X gn−1 , i  

gn ,i=X n−iY i f =Y ( X (n−1)−(i−1)Y i –1 f )=Y gn−1 ,i−1  

Dt
n f =∑

i=0

n

C in (x(1) X )
n−i

( y(1)Y )
i f =∑

i=0

n

C in (x(1 )
)
n−i

( y(1)
)
i g n , i  
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C in i=n C i –1n –1 , C in (n−i)=n C in – 1 より

d
d t

(Dt
n f )=

d
d t

∑
i=0

n

C in (x(1 ))n−i( y(1))i g n , i  = ∑
i=0

n

C in
d
d t

(( x(1))n−i( y(1))i gn ,i)

=
∑
i=0

n

C in ( d
d t

(x(1 ))n−i)( y(1))i g n , i+( x(1))n−i( d
d t

( y(1))i)g n ,i+( x(1))n−i( y(1))i d
d t

g n ,i

= ∑
i=0

n

C in (n−i)( x(1))n−i –1 x(2)( y(1 ))i gn ,i + ∑
i=0

n

C in (x(1))n−i i( y(1 ))i – 1 y(2)g n , i + ∑
i=0

n

C in (x(1))n−i( y(1))i Dt g n , i

= n x(2) ∂
∂ x

∑
i=0

n−1

C in−1 (x(1))n– 1−i( y(1))i gn−1 ,i

+ n y(2 ) ∂
∂ y

∑
i=1

n

C i−1n−1 ( x(1))(n−1)−(i−1)( y(1))i –1 gn−1, i−1

+ Dt∑
i=0

n

C in (x(1)
)
n−i

( y(1)
)
i g n ,i

= n x(2) ∂
∂ x

Dt
n –1 f +n y(2) ∂

∂ y
Dt

n –1 f +Dt
n Dt f

= (n (x(2) X + y(2)Y ) Dt
n –1

+Dt
n+1) f = (n D t

(2) Dt
(n–1)

+Dt
n+1

) f

(B6)
d 2

d t2 f =
d
d t (

d
d t

f ) =
d
d t

(Dt f ) =
d
d t

(Dt
(1 ) f )  = (Dt

(2)
+D t

(1) Dt) f = (Dt
(2)

+D t
2
) f

(B7)
d 3

d t3 f  = 
d
d t ( d 2

d t2 f ) =
d
d t

(Dt
(2) f +Dt

2 f ) = 
d
d t

(Dt
(2) f )+

d
d t

( Dt
2 f )

= (Dt
(3)

+Dt
(2) Dt) f +( Dt

3
+2 Dt

(2) Dt) f = (Dt
3
+3D t

(2) Dt+Dt
(3)

) f

(証明終わり)

● x (t)=x+h t ( x と t は互いに独立)の時

(C1) Dt=Dt
(1)

=h X + y(1)Y

(C2) Dt
(2)

= y(2 )Y

(C3) Dt
(3 )

= y(3)Y

(C4)
d 2

d t2 f =( Dt
2
+D t

(2)
) f =(Dt

2
+ y(2)Y ) f  

(C5)
d 3

d t3 f = (Dt
3
+3D t

(2) Dt+Dt
(3)

) f = (Dt
3
+3 y(2) Dt Y+ y(3)Y ) f

●パラメータの方程式

(☆)の左辺を x による微分でテーラー展開すると

[(☆)の左辺] = y (x+h)= y (x )+∑
n=1

4 y(n)
( x)

n !
hn+O(h5) (LR1)

(☆)の右辺を h による微分でテーラー展開すると

補題 [1]より (hu i k i(h))(n )
=u i(n k i

(n−1 )
(h)+hk i

(n)
(h)) = nu i k i

(n−1)
(h)+hu i k i

(n)
だから

[(☆)の右辺] = ∑
i=1

4

u i k i h=∑
i=1

4

{0+∑
n=1

4 nui k i
(n−1)

(0)
n!

hn}+O(h5
) = ∑

n=1

4

{∑
i=1

4 nu i k i
(n−1)

(0)

n !
hn}+O (h5

) (LR2)

(LR1)(LR2)より (☆)は ∑
n=1

4 y(n)
( x)

n!
hn

= ∑
n=1

4

{∑
i=1

4 nu i k i
(n−1)

(0)

n !
hn}+O (h5

)

各係数を等しいとおくと y(n)( x)=n∑
i=1

4

u i k i
(n−1)(0) (n=1 ,2 ,3 ,4) (LR3)
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●(LR3)の左辺について
F (n)

 は x についての n 階導関数を表す。 f =k1= f ( x , y (x )) とおく。

線形作用素を以下に定義する。

D x
(n)

= x(n) X + y(n)
( x)Y , D x=D x

(1)
, D x

n=∑
k =0

n

C kn X n−k (k1 Y )
k

次の結果が導かれる。

(L1) D x = X +k 1Y  , D x
(n)

= y(n)Y (n≥2)  

(L2) y(1)
(x ) = k 1

(L3) y(2)
( x) = k 1

(1)
= D x k1 , D x

(2)
= y(2 )Y = D x k1 Y

(L4) y(3)
( x) = k 1

(2)
= (D x

2
+D x k 1Y )k 1 , D x

(3 )
= y(3)Y = D x

2 k1 Y +D x k1 Y k1 Y

(L5) y(4 )
( x) = k 1

(3 )
= (Dx

3
+3 Dx k 1 D xY +D x

2 k1 Y +D x k1 Y k 1Y )k 1

証明

(L2) y(1)
(x )= f ( x , y( x)) = k 1

(L1) D x = D x
(1 )

=X + y(1)Y = X +k 1Y  , D x
(n)

= y(n)Y (n≥2)  

(L3) (L2)(B2)より y(2)
( x)=

d
d x

y(1)
(x )=

d
d x

k 1 = D x k1

(L4) (L2)(C4)(L3) より y(3)
( x)=

d 2

d x2 y(1 )
(x) =

d 2

d x2 k 1 = (D x
2
+ y(2 )Y )k 1 = (D x

2
+D x k 1Y )k 1

(L5) (L2)(C5)(L3)(B4) より y(4 )
( x)=

d 3

d x3 y(1)
= (D x

3
+3 y(2)Y D x+ y(3 )Y )k 1

= D x
3
+3 D x k1 D xY +D x

2 k 1Y +D x k 1Y k1 Y

(証明終わり)

●(LR3)の右辺について

補題 [1]　  F (h)  は h による n 階微分可能とすると (h F (h))(n)=n F (n –1)(h)+h F (n)(h)

証明
(h F )

(1)
=F+h F (1)

= 1 F (0 )
+h F (1)

よって n=1 の時正しい。

 n=k の時正しいと仮定する。 (h F )
(k)

=k F (k−1)
+h F (k )

(h F )
(k+1)

=
d

d h
(h F )

(k)
=

d
d h

(k F (k−1)
+h F (k)

) = k F (k)
+F (k)

+h F (k +1)
=(k+1) F (k )

+h F (k +1)
(証明終わり)

F (n)
 は h についての n 階導関数を表す。 Bi=∑

j=1

i−1

bi j とおく。規約により B1=∑
j=1

0

bi j=0

線形作用素を以下に定義する。

Di ,h
(n)

=(ai h)
(n) X + y i

(n)Y , Di ,h=Di ,h
(1)

, Di ,h
n

= ∑
k=0

n

C kn (a i X )
n –k ( yi

(1)Y )
k

結果

(R1) y1
(n)

(h)=0 , y i
(n)

(h) = ∑
j=1

i−1

b i j(n k j
(n−1)

+hk j
(n)) , y i

(n)
(0)=n∑

j=1

i−1

bi j k j
(n−1)

(0) , (n≥1)

(R2) D1 , h=0

(R3) k 1
(n)

=
d n

d hn k 1=
d n

d hn f (x , y )=0

(R4) k i
(1)

(0)=Di ,0 k 1  

(R5) k i
(2)

(0) = (Di ,0
2 +2∑

j=1

i−1

bi j D j , 0 k 1Y )k 1

(R6) k i
(3 )

(0) = (Di ,0
3 +6∑

j=1

i−1

bi j D j , 0 k1 Di ,0 Y+3∑
j=1

i−1

bi j D j ,0
2 k 1Y +6∑

j=1

i−1

bi j∑
k=1

j−1

b j k D k , 0 k 1Y )k 1

(R7) Di ,0
n

= ∑
k=0

n

a i
n−k Bi

k C kn X n– k (k 1Y )
k
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証明

(R1) 規約より y1(h) = y+h∑
j=1

0

bi j k j = y → y1
(n)

(h)=
d n

d hn y=0

(R2)定義より Di ,h = a i X + y i
(1)Y → a1= y1

(1)
=0 より D1 , h=0  

(R3) k i(0)= f ( x , y)=k 1 , y i(0)= y より k 1
(n)

=
d n

d hnn k 1=
d n

d hn f (x , y )=0   

(R4) (B2)より k i
(1)

(h) =
d

d h
k i=Di ,h k i  → k i

(1)
(0)=Di ,0 k 1

(R5) (C4)より k i
(2)

(h) =
d 2

d h2 k i=( Di ,h
2

+ y i
(2)Y )k i  

 (R1)(R4)より y i
(2)(0)=2∑

j=1

i−1

b i j k j
(1)(0) = 2∑

j=1

i –1

b i j D j ,0 k 1  (R5-1) 

k i
(2)

(0) = (Di ,0
2 +2∑

j=1

i−1

bi j D j , 0 k 1
∂

∂ y
)k 1

(R6) (C5)より k i
(3 )

(h) =
d 3

d h3 k i  = (Di ,h
3

+3 y i
(2) Di , h Y+ y i

(3)Y )k i

  (R1)(R5)より y i
(3)

(0)=3∑
j=1

i−1

bi j k j
(2)

(0) = 3∑
j=1

i−1

bi j (D j ,0
2

+2∑
k=1

j−1

b j k D k , 0)k 1

 (R5-1)より k i
(3 )

(0) = (Di ,0
3 +3×2∑

j=1

i−1

bi j D j ,0 k1 Di , 0Y +3∑
j=1

i−1

b i j D j ,0
2 Y+6∑

j=1

i−1

bi j∑
k =1

j−1

b j k D k ,0 k 1Y )k 1

(R7) (R2)より y i
(1)

(0)=∑
j=1

i−1

bi j k1 = Bi k 1

Di ,0
n

= ∑
k=0

n

C kn (a i X )
n –k ( yi

(1)(0)Y )
k

= ∑
k=0

n

a i
n−k Bi

k C kn X n– k (k 1Y )
k

(LR3)を計算する。

補題 2 c p , c pq を実数として
D x

n
=∑

i

c i Di ,0
n

 ならば 1=∑
i

ci a i
n−k Bi

k

,  (k=0,1,⋯, n)

D x
n k1 D x

n
=∑

i , j

ci , j Di ,0
n k 1 D j ,0

n

ならば 1=∑
i , j

ci , j a i
n –k a j

n−l Bi
k B j

l
(k=0 ,1 ,⋯, n , l=0 ,1 ,⋯, n)

証明

D x
n
=∑

k =0

n

C kn X n−k (k1 Y )
k

, Di ,0
n

= ∑
k=0

n

a i
n−k Bi

k C kn X n– k (k 1Y )
k

より導かれる。

（証明終り）

以下では二重 Σ が意味を持つように和の範囲を調整する。（例） ∑
i=1

4

∑
j=1

i−1

X i j=∑
i=2

4

∑
j=1

i−1

X i j

● n=1 の時 y(1)
(x )=∑

i=1

4

ui k i(0) → k 1=∑
i=1

4

ui k 1 → 1=∑
i=1

4

u i (RK1)

● n=2 の時 y(2)( x)=2∑
i=1

4

u i k i
(1)(0) → D x k1=2∑

i=1

4

u i Di , 0 k 1 = 2∑
i=2

4

u i Di , 0 k 1 ( D1 , 0=0 より)

補題 2 より 1=2∑
i=2

4

u1 a i
1−k B i

k
= 2(u2a2

1−k B2
k
+u3a3

1−k B3
k
+u4 a4

1−k B4
k
) (k=0 ,1) (RK2)
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● n=3 の時 y(3)( x)=3∑
i=1

4

u i k i
(2 )(0)

y(3)
( x) = (D x

2
+D x k 1Y )k 1 = D x

2 k1+D x k1 Y k 1

3∑
i=1

4

ui k i
(2)(0) = 3∑

i=1

4

u i D i , 0
2 k1+6∑

i=1

4

ui∑
j=1

i –1

b i j D j ,0 k 1Y k 1

= 3∑
i=2

4

u i D i , 0
2 k1+6∑

i=3

4

ui∑
j=2

i –1

bi j D j ,0 k1 Y k 1 ( D1 , 0=0 より)

対応する項が等しいとおくと補題２より

D x
2 k1=3∑

i=2

4

ui Di ,0
2 k1 → 1=3∑

i=2

4

u i a i
2−k B i

k (k=0 ,1 ,2)  (RK3)

D x k1
∂

∂ y = 6∑
i=3

4

∑
j=2

i−1

ui bi j D j , 0 k 1
∂

∂ y → 1=6∑
i=3

4

∑
j=2

i−1

u ib i j a j
1−k B j

k (k=0 ,1) (RK4)

● n=4 の時

y(4 )
( x)=4∑

i=1

4

u i k i
(3)

(0) = (Dx
3
+3 Dx k 1 D xY +D x

2 k1 Y +D x k1 Y k 1Y )k 1

4∑
i=1

4

ui k i
(3 )

(0) = (4∑
i=1

4

ui Di ,0
3 )k 1+(24∑

i=1

4

∑
j=1

i−1

ui bi j D j , 0 k 1 Di ,0 Y )k1

     + (12∑
i=1

4

∑
j=1

i−1

u ib i j D j ,0
2 k 1Y )k 1+(24∑

i=1

4

∑
j=1

i−1

ui bi j∑
k =1

j−1

b j k Dk ,0 k 1Y )k 1

   = (4∑
i=2

4

ui Di ,0
3 )k 1+(24∑

i=3

4

∑
j=2

i−1

u ib i j D j ,0 k 1 Di , 0Y )k1

     + (12∑
i=3

4

∑
j=2

i−1

u i bi j D j , 0
2 k1 Y)k 1+(24∑

i=4

4

∑
j=3

i−1

ui b i j∑
k=2

j−1

b j k D k , 0 k 1Y )k1

対応する項が等しいとおくと補題 2 より

D x
3 k1=4∑

i=2

4

u i Di ,0
3 k 1 → 1=4∑

i=2

4

u i ai
3−k Bi

k (k=0 ,1 ,2 ,3) (RK5)

D x k1 D xY = 8∑
i=3

4

∑
j=2

i−1

u i bi j D j ,0 k1 Di ,0Y → 1=8∑
i=3

4

∑
j=2

i−1

ui bi j a j
1−k a i

1−m B j
k Bi

m (k=0 ,1 ,m=0 ,1) (RK6)

D x
2=12∑

i=3

4

∑
j=2

i – 1

ui bi j D j , 0
2

→ 1=12∑
i=3

4

∑
j=2

i−1

ui bi j a j
2−k B j

k
= 12(u3b3 2 a2

2– k B2
k
+u4 b4 2 a2

2−k B2
k
+u4 b4 3 a3

2−k B3
k
) (k=0 ,1 ,2) (RK7)

D x k1 Y = 24∑
i=4

4

∑
j=3

i –1

∑
k=2

j – 1

ui bi j b j k D k , 0 k 1Y = 24u4 b43b32 D 2 ,0 k1 Y

→ 1=24u4b4 3 b3 2 a2
1 –m B2

m (m=0 ,1) (RK8)

● Bk (k=2 ,3 ,4) の消去

(RK8)により u4 b4 3 b3 2≠0 かつ u4 b4 3 b3 2(a2 – B2)=0 → a2=B2 (RK9–1)

(RK9-1)を(RK7)に代入すると 1=12(u3 b32 a2
2
+u4 b42 a2

2
+u4 b43 a3

2−k B3
k
) (k=0 ,1 ,2)

→ u4 b4 3≠0 かつ u4 b43 a3
2
=u4 b43a3 B3=u4 b43 B3

2
→ a3

2
=a3 B3=B3

2

→ (a3 – B3)
2
=a3

2 – 2a3 B3+B3
2
=a3

2 – 2 a3
2
+a3

2
=0 → a3=B3 (RK9-2)

(R9-1)(R9-2)を(RK2)に代入すると 1=2(u2 a2+u3 a3+u4 a4
1−i B4

i
) (k=0 ,1)

→ u4≠0 かつ u4(a4 – B4)=0 → a4=B4  (RK9-3)

(RK9-1)(RK9-2)(RK9-3)をまとめると a i=B i = ∑
k =1

i−1

bi k (i=2 ,3 ,4) (RK9)
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●バラメータの方程式

(RK9)を(RK1)～(RK8)に代入して整理する。

1=∑
p=1

4

u p  (RK1)

1=2∑
p=2

4

u p a p (RK2)

1=3∑
p=2

4

u p a p
2

 (RK3)

1=6∑
p=3

4

u p∑
k=2

p– 1

b pk ak  (RK4)

1=4∑
p=2

4

u p a p
3

 (RK5)

1=8∑
p=3

4

u pa p∑
k=2

p– 1

b pk ak (RK6)

1=12∑
p=3

4

u p∑
k=2

p−1

b pk ak
2

(RK7)

1=24u4 b4 3b3 2 a2 (RK8)

a i = ∑
k =1

i−1

bi k  (i=2 ,3 ,4) (RK9)

以上,方程式の数は 11 個,パラメータの数は 13 個だから, 2 つのパラメータは任意に決められる。

a2=
1
2  , b43=1 とおくと Runge の 1 / 6 公式 

a2=
1
3  , b43=1 とおくと Kutta の 1 / 8 公式 

●あとがき

　できるだけ、わかりやすさを意識して書いたつもりであるが、やはり煩雑な印象をぬぐえない。計算の複雑さ

を特殊な偏微分の記号の中にブラックボックス化して整理することで、計算量を減らすことはできるが、十分に

簡明とはとても言えない。

　この稿では 4 次の R-K 公式を扱っているが、8 次や 9 次の R-K 型公式も公表されている。
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