
シュレーディンガー方程式

§1.光の粒子性と波動性の二重性

エネルギー E ,運動量 p ,振動数 ν ,波長 λ ,プランク定数 h の関係式は
E=hν

p=
h
λ

または E= h̄ω
p=h̄ k

(1-1)　　ここで h̄=ℏ=
h

2π
はディラック定数(エイチバーと読む)

波数 k=
2 π
λ

,角速度(角振動数) ω=
2π
T

=2π ν (1-2)  ( k 1=
1
λ

を波数ということもある。)

(1-1)の左辺は粒子性を、右辺は波動性をあらわす。

§2.波の一般式

位置 x ,時間 t ,波長 λ ,周期 T とすると波の一般式は(1-1)より

y=Asin(2π (
x
λ
−
t
T

))=Asin (k x−ωt )=A sin(
p
h̄
x−
E
h̄
t)

これを x , t で偏微分して h̄ 倍すると以下のように p , E が現れることがわかる。

h̄
∂
∂ x

(Asin(
p
h̄
x−

E
h̄
t))= p Acos (

p
h̄
x−
E
h̄
t )  (2-1)

h̄
∂
∂ t

(Asin (
p
h̄
x−
E
h̄
t ))=−E A cos(

p
h̄
x−
E
h̄
t)  (2-2)

§3.複素数平面の極形式

i2=−1 として複素数 z=a+b i  の共役複素数は z̄=a−b i 絶対値は ∣z∣2= z z̄
f (θ)=cosθ+i sin θ とおき、その微分を実部の微分と虚部の微分で定義すれば、

d f ( x)
d x

=i f (x ) が成立する。証明
d f ( x)
d x

=
d
d x

cos x+i
d
d x

sin x=−sin x+i cos x

i f ( x)=i(cos x+i sin x)=i cos x−sin x
f (x ) を指数関数 e x と比較すると、三角関数の加法定理から

f (α+β )= f (α) f ( β )

f (α−β)=
f (α)
f ( β)

f (α)n= f (nα)
d f (x )
d x

=i f ( x)

eα+β=eαe β

eα−β=
eα

e β

(ex)n=en x

d ea x

d x
=ae x

形式が似ることから e i x=cos x+i sin x と定義する。

波の一般式は ψ=Ae
i ( p
h̄
x−E

h̄
t)
=A(cos (

p
h̄
x−
E
h̄
t )+i sin(

p
h̄
x−
E
h̄
t )) の虚部になる。

偏微分を極形式で書き直すと

−i h̄
∂ψ
∂ x

=−i h̄
∂
∂ x

Ae
i ( p
h̄
x− E

h̄
t )
=−i h̄(i

p
h̄

)Ae
i ( p
h̄
x−E

h̄
t )
=pψ

i h̄
∂ψ
∂ t

=
∂
∂ t
A e

i( p
h̄
x−E

h̄
t )

=i h̄ (−i
E
h̄

)Ae
i ( p
h̄
x− E

h̄
t )

=E ψ

→
−i h̄

∂ψ
∂ x

= pψ

i h̄
∂ψ
∂ t

=E ψ
・・・(3-1)

(3-1)から次の対応を考える。 p  → −i h̄
∂
∂ x

 

E  → i h̄
∂
∂ t

式中の p , E を対応する偏微分で置換することを量子化(正準量子化)という。
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§4.シュレーディンガー方程式

　ここからは ψ を一般の x , t の関数とする。

運動エネルギー T ,位置エネルギー（ポテンシャル） V 力学的エネルギー E=T+V

ハミルトン関数(ハミルトニアン) H =( E を位置 x と運動量 p の関数で表したもの )

量子力学では、この H 中の p , E を(3-1)で量子化したものを同じ記号 H で表す。

　シュレーディンガー方程式は(3-1)の E を量子化された H で置き換えて

i h̄
∂ψ
∂ t

=H ψ

と決める。 ψ を波動関数という。

ψ の共役複素数を ψ̄=ψ*
書くと ∣ψ∣2

=ψ ψ*
。粒子が 時刻 t に区間 [ x , x+d x]  

に存在する確率を ∣ψ∣2d x と決める。これより ∫
−∞

∞

∣ψ∣
2
dx=1 これを規格化条件という。

§4-1.定常状態のシュレーディンガー方程式

ψ ,V が時間 t によって変化しないとき、定常状態という。

T=
1
2
mv2

=
p2

2m
から p → −i h̄

∂
∂ x

の量子化を使って T=−
h̄2

2m
∂2

∂ x2

以上からハミルトニアンは H=T+V=−
h̄

2m
∂2

∂ x2+V (x ) 　(4-1-1)

E→ i h̄
∂
∂ t

の量子化から i h̄
∂
∂ t
ψ=E ψ (4-1-2)

シュレーディンガー方程式 i h̄
∂
∂ t
ψ=H ψ (4-1-3)

(4-1-2)(4-1-3)から i h̄
∂
∂ t
ψ を消去して Eψ=H ψ これに(4-1-1)を代入して

d 2ψ (x)
d x2 +

2m
h̄2 (E−V )ψ ( x)=0 これは定常状態のシュレーディンガー方程式である。

§4-2. 1 次元自由粒子のシュレーディンガー方程式を解く

ポテンシャル V=(0 (0≤x≤L)
∞ ( x<0, L< x)) とする。

シュレーディンガー方程式は
d 2ψ (x)
d x2 +

2m
h̄2 Eψ ( x)=0

微分方程式の解法として ψ (x )=C sina x+D cos a x ( C , D ,a は未知数)を代入すると

d 2ψ (x)
∂ x2 =−a2

(C sina x+D cos a x)=−a2ψ (x ) より a2
=

2m

h̄2
E

C , D  は境界条件 x=0, L の時 ψ (x )=0 から決める。

(x ,ψ )=(0, 0) より D=0  これから C≠0 でなければならない。

(x ,ψ )=(0, L) より C sin (a L)=0  → sin(a L)=0  → a L=nπ  ( n は整数 n≠0 )

E=
a2 h̄2

2m
=
π2 h̄2

2mL2 n
2
=En  ψ (x )=C sin(a x)=C sin (

nπ
L
x)

∫
0

L

∣ψ∣
2
dx=1 より C=√ 2

L
 ψ (x )=√ 2

L
sin(

n π
L
x ) と求められる。
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§5.物理量の測定

(3-1)
−i h̄

∂ψ
∂ x

= pψ

i h̄
∂ψ
∂ t

=E ψ
から

P=−i h̄
∂
∂ x

A=i h̄
∂
∂ t

とおくと P ψ=pψ
Aψ=E ψ

微分の性質から a ,b を複素定数とすると
P (a ψ+bφ)=a Pψ+b P φ
A(aψ+b φ)=a Aψ+b Aφ

（線形性）

一般に、関数から関数への線形性をもつ変換 A を作用素または演算子という。

Aψ=a ψ が成立する時 A を物理量、 ψ を固有状態 a を固有値という。

P を運動量作用素 Qψ=x ψ となる Q を位置作用素という。

(作用素の累乗) A1ψ=Aψ , Anψ=A(An –1ψ )  で作用素の累乗を定義する

§5-1.物理量の期待値、分散

確率変数 X の期待値はその密度関数を f (x ) とすると E (X )=∫
−∞

∞

x f ( x)dx である。

これに f (x )=∣ψ∣2=ψ ψ および、位置作用素 Qψ=xψ を代入すると

E (X )=∫
−∞

∞

xψ ψ dx=∫
−∞

∞

ψQψ dx 　

これを一般化して、物理量 A の期待値を 〈A〉=∫
−∞

∞

ψ Aψ dx  と定義する。

規格化条件より 〈1 〉=∫
−∞

∞

ψ1ψ d x=1

運動量作用素 P の期待値は A=−i h̄
∂
∂ x

 として 〈P〉=∫
−∞

∞

ψ(−h̄ ∂∂ x )ψ dx  

エネルギー E の期待値は A=i h̄
∂
∂ t

として 〈A〉=∫
−∞

∞

ψ(i h̄ ∂∂ t )ψ dx  

A ,B を作用素 a ,b を複素数とすると 〈a A+b B〉=a 〈A〉+b 〈B〉 (線形性)が成立する。

ΔA=A – 〈A〉 を偏差,  σ A
2
=〈(A−〈A〉)

2
〉  を分散という。 

線形性と作用素の累乗の定義から σ A
2
=〈A2

〉−〈A〉
2  が成立。

証明 σ A
2
=〈(A – 〈A〉)

2
〉=〈(A2– 2 〈A〉 A+〈A〉

2
)〉=〈A2

〉 – 2 〈A〉
2
+〈A〉

2
=〈A2

〉 – 〈A〉
2 　

§5-2.関数の内積

次の(1)-(4)を満たす複素数 (x , y ) を内積という。

(1) (x , x)≥0 , (x , x)=0 は x=0 の必要十分条件

(2) (x , y )=( y , x)

(3) 複素数 α とすると (x ,α y)=α(x , y )

(4) (x , y+ z)=(x , y)+(x , z )

以上から (α x , y)=α(x , y ) (x+ y , z)=(x , z)+( y , z ) が導かれる。

∥x∥=√( x , x) と定義すると(5)-(7)が成立。これをノルムという。

(5) ∥x∥≥0 , ∥x∥=0 は x=0 の必要十分条件

(6)複素数 α とすると ∥α x∥=∣α∣∥x∥

(7) 三角不等式 ∥x+ y∥≤∥x∥+∥y∥
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(8)シュワルツの不等式 ∣(x , y )∣≤∥x∥∥y∥

[証明] (x , y )=0 の時は自明。 (x , y )≠0 の時、任意の実数 t から α=t
(x , y )
∣(x , y )∣

と置く。

0≤( x+α y , x+α y )=∥x∥
2
+α( y , x )+α(x , y )+∣α∣

2
∥y∥

2

=∥x∥
2
+t

1
∣( x , y)∣

(x , y )(x , y )+t
1

∣(x , y )∣
(x , y )( x , y)+t 2∥y∥

2

=∥x∥
2
+2 t∣(x , y )∣+t 2∥y∥

2

　

判別式から 
D
4

=∣( x , y)2∣–∥x∥2
∥y∥

2
≤0  これよりシュワルツの不等式が証明された。

∥x+ y∥
2
=∥x∥

2
+2Re( x , y)+∥y∥

2
≤∥x∥

2
+2∥x∥∥y∥+∥y∥

2
=(∥x∥+∥y∥)

2
より(7)も証明される。

波動関数 ψ ,φ について (ψ ,φ)=∫
−∞

∞

ψ φd x とおくと、(2)-(4)が成立。

連続関数の場合は(1)も成立。 (ψ ,ψ )=0 の時 ψ が連続でなくてもゼロ関数と同等に扱う。

内積を使うと平均と分散は以下のように表せる。

〈A〉=∫
−∞

∞

ψ Aψ d x=(ψ , Aψ ) (5-2-1)  ( =〈ψ∣A∣ψ 〉 の記号で表すこともある。)

σ A
2
=〈(A−〈A〉)

2
〉=(ψ ,(A−〈A〉)

2ψ )=((A−〈A〉)ψ ,(A−〈A〉)ψ )=∥(A−〈A〉)ψ∥
2

(5-2-2)

§5-3.自己共役（エルミート）作用素

∫
−∞

∞

ψ̄ Aφ d x=∫
−∞

∞

Aψ φd x が成立する作用素 A を自己共役(エルミート)作用素という。

この時 〈A2
〉≥0 　（証明） 〈A2

〉=∫
−∞

∞

ψ̄ A2ψ d x=∫
−∞

∞

Aψ Aψ d x=∫
−∞

∞

∣Aψ∣
2
d x≥0

内積を使うと (ψ , Aφ)=(Aψ ,φ) であり、 〈A2〉=(ψ , A2ψ)=(Aψ , Aψ )=∥Aψ∥
2
≥0

A ,B が自己共役ならば実数 a , b a A+b B および偏差 ΔA も自己共役になる。

証明 (ψ ,(a A+b B)φ)=a (ψ , Aφ)+b (ψ , Bφ)=a (Aψ ,φ)+b(Bψ ,φ)=((a A+b B)ψ ,φ)  

§5-3.運動量作用素の自己共役性

波動関数ψについて lim
x→∞

ψ (x )= lim
x→−∞

ψ (x)=0 (5-3-1)が成立。

ψ ,φ を波動関数、Pを運動量作用素として

(ψ , P φ)=∫
−∞

∞

ψ Pφ d x=∫
−∞

∞

ψ i h̄
∂φ
∂ x
d x=i h̄([ψ φ]−∞

∞
−∫

−∞

∞ ∂ψ
∂ x
φ d x)=−i h̄∫

−∞

∞ ∂ ψ
∂ x

φd x

=∫
−∞

∞

i ℏ
∂ψ
∂ x
φd x=∫

−∞

∞

Pψ φd x=(P ψ ,φ)

 

よって運動量作用素 Pは自己共役である。

(5-3-1)の証明：確率密度 f (x )≥0 が連続な場合に証明する。

分布関数 F ( t)=∫
−∞

t

f ( x)d x は単調増加

lim
t→∞

F ( t)=1 より h>0 の時 lim
t→∞

F ( t+h)−F (t)=0

→∀ ε>0  ∃ δ>0   , t>δ ⇒ 0≤F ( t+h)−F (t)<ε h (1)

平均値の定理より F ( t+h)−F (t)= f (t+k )h  0<k<h (2)

(1)(2)より 0≤ f (t+k )h<ε h ⇒ 0≤ f (t+k )<ε ここで h→0 の時 k→0

f (x ) の連続性より 0≤ f (t)<ε よって lim
t →∞

f (t)=0 (3)　同様に lim
t →−∞

f (t )=0 (4)
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§5-4.1 次元自由粒子の位置の期待値

am=∫
0

L

xm cos(
2 nπ
L

x)d x とすると a0=a1=0  a2=
L3

2 n2π 2

証明 m=0 の時 a0=∫
0

L

cos (
2nπ
L
x )d x=[

L
2nπ

sin(
2n π
L

x)]
0

L

=0

m≥1 の時

am=∫
0

L

xmcos (
2nπ
L
x )d x=∫

0

L

xm(
L

2 nπ
sin (

2nπ
L
x )) ' d x

=[xm(
L

2nπ
sin(

2n π
L

x))]
0

L

−∫
0

L

(xm)' (
L

2 nπ
sin (

2nπ
L
x ))d x

=−∫
0

L

m xm−1 L
2nπ

sin(
2n π
L

x)d x=−
mL
2nπ

∫
0

L

xm−1sin(
2nπ
L

x)d x

  

m=1 の時

am=a1=−
L

2 nπ
∫
0

L

sin (
2nπ
L
x )d x=−

L
2 nπ

[
L

2nπ
cos(

2nπ
L

x)]
0

L

=−
L2

4n2π 2 (cos2 nπ – cos0)=0

   

m≥2 の時

am=
m L
2 nπ

∫
0

L

xm−1
(
L
2n π

cos (
2n π
L

x))' d x

=
m L
2nπ

([ xm−1
(
L

2 nπ
cos(

2 nπ
L

x))]
0

L

−∫
0

L

(xm−1
) '

L
2 nπ

cos(
2 nπ
L

x)d x)

=
m L
2nπ

(
Lm

2nπ
cos(2nπ )−∫

0

L

(m−1) xm−2 L
2nπ

cos(
2 nπ
L

x)d x )

=
m L
2nπ

(
Lm

2nπ
−

(m−1)L
2n π

∫
0

L

xm−2 cos(
2 nπ
L

x)d x )=
m Lm+1

4n2π2 −
m(m−1)L2

4n2π2 am−2

  

→ a2=
2 L2+1

4 n2π 2−
2(2 – 1) L2

4n2π 2 a0=
L3

2n2π2    

〈 X 〉=∫
0

L

x
2
L

sin2
(
nπ
L
x )dx=

1
L
∫
0

L

x (1−cos(
2nπ
L

x))d x

=
1
L

(∫
0

L

x d x−∫
0

L

x cos (
2nπ
L

x)d x )=
1
L

([
x2

2
]

0

L

−a1)=
1
L
L2

2
=
L
2

 　

〈 X 2
〉=∫

0

L

x2 2
L

sin2
(
nπ
L
x )dx=

1
L

(∫
0

L

x2
(1−cos(

2 nπ
L

x))d x)

=
1
L

(∫
0

L

x2d x−∫
0

L

x2 cos (
2nπ
L
x )d x)=

1
L

([
x3

3
]

0

L

−a2)=
1
L

(
L3

3
−

L3

2n2π2 )=
L2

3
−

L2

2n2π 2

  

σ X
2
=〈X 2

〉−〈X 〉
2
=
L2

3
–

L2

2n2π 2−
L2

4
=
L2

12
–

L2

2 n2π 2    (5-4-1)
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Pψ (x )=i h̄
∂
∂ x √ 2

L
sin (

nπ
L
x)=i h̄√ 2

L
nπ
L

cos (
nπ
L
x )  

〈P〉=i ℏ
nπ
L2 ∫

0

L

2sin(nπL x)cos( nπL x)d x= i ℏn πL2 ∫
0

L

sin(2nπ
L
x)d x

=
i ℏ nπ
L2 [−

L
2 nπ

cos(2nπ
L

x)]
0

L

=−
i ℏ
2 L

(cos (2n π)−cos0)=0

 

〈P2
〉=∫

0

L

∣Pψ∣
2
dx=∫

0

L

h̄2 2 n2π2

L3 cos2
(
nπ
L
x)d x=

2 h̄2n2π 2

L3 ∫
0

L
1
2
(cos(

2nπ
L
x )+1)d x

=
h̄2n2π2

L3 [
L

2nπ
sin(

2n π
L
x)+ x ]

0

L

=
h̄2n2π 2

L3 L=
π2 h̄2n2

L2

 

σ P
2
=〈P2

〉−〈P 〉
2
=
π 2 h̄2n2

L2
(5-4-2)

§6. 位置と運動量の交換関係

[A , B]=A B – B A を交換子という。偏差について [ΔA , ΔB]=[A ,B ] (1)が成立

位置 x と運動量 p が実数ならば p x=x p の交換法則が成立する。

これを運動量作用素 P と位置作用素 Q で

p x  → PQ
x p  → Q P

という量子化をすると

(2) [P ,Q ]=PQ−Q P=−i h̄

(3) (ΔP ψ , ΔQψ )−(ΔQψ , ΔPψ )=−i h̄ が成立

(4)
h̄
2
≤∣(ΔP ψ , ΔQψ )∣

(5)不確定性関係 σ Pσ Q≥
h̄
2

証明

(1) [ΔA , ΔB]=ΔA ΔB – ΔB ΔA=(A– 〈A〉)(B – 〈B 〉)−(B – 〈B〉 )(A– 〈A〉)
=AB−〈B〉 A−〈A〉B+〈A〉 〈B〉−(B A−〈A〉B−〈B 〉A+〈A〉 〈B 〉)=AB – B A=[A , B]

(2) PQψ=−i h̄
∂
∂ x

( xψ )=−i h̄
∂ x
∂ x
ψ−i h̄ x

∂ψ
∂ x

=−i h̄ψ+ x (−i h̄
∂ψ
∂ x

)=−i h̄ψ+Q Pψ  

(3)(1)より [ΔP , ΔQ]=[P ,Q ]=−i h̄ → ΔP ΔQ=ΔQ ΔP−i h̄
(ΔP ψ , ΔQψ )=(ψ , ΔP ΔQψ )=(ψ ,(ΔQ ΔP−i h̄)ψ)
=(ψ , ΔQ ΔPψ )−i h̄(ψ ,ψ )=(ΔQψ , Δ Pψ )−i h̄

(4) ∣−i h̄∣=∣(ΔPψ , ΔQψ)−(ΔQψ , ΔP ψ)∣≤∣(ΔPψ , ΔQψ)∣+∣(ΔQψ , ΔPψ )∣

=∣(ΔP ψ , ΔQψ )∣+∣(ΔQψ , ΔPψ )∣=2∣(ΔPψ , ΔQψ)∣

→
h̄
2
≤∣(ΔP ψ , ΔQψ )∣

(5)　(4)とシュワルツの不等式から σ Pσ Q=∥Δ Pψ∥∥ΔQψ∥≥∣(ΔPψ , ΔQψ)∣≥
h̄
2

 

１次元自由粒子の場合は(5-4-1)(5-4-2)( n≥1 )より

σ X
2 σ P

2
=(
L2

12
–

L2

2n2π 2 )
π 2 h̄2n2

L2 =(
π 2n2

3
– 2)

h̄2

4
≥
h̄2

4
なので (5)が成立している。
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§7. 量子数

水素原子において３次元シュレーディンガー方程式を解くと、量子数が現れる。

主量子数：電子殻の種類を指し、 n で表す。

n 1 2 3 4 5 6 7

電子殻 K殻 L殻 M殻 N殻 O殻 P殻 Q殻

方位量子数：軌道の形を判断するための指標で l で表わす。

主量子数 n の時、方位量子数 l=0,1,2,3,⋯ , n−1 の値をとる。

方位量子数 l の軌道の個数は 2 l+1 である。

l 0 1 2 3 4 5 6

軌道 s軌道 p軌道 d軌道 f軌道 g軌道 h軌道 i軌道

個数 1 3 5 7 9 11 13

磁気量子数：軌道の方向を判断するための指標で、 m で表す。

方位量子数 l の時、 m=−l ,−(l−1)⋯−1,0,1,⋯, l−1 , l の 2 l+1 通りの値をとる。

例えば l=1 は p 軌道を指しており、 m=−1,0,1 の３通りの方向がある。

p x , p y , p z の 3 方向はここから導かれる。

球対称の場では、 2 l+1 通りの状態はすべて同じ（縮退）だが、磁場がかかると縮退が解

けて異なるエネルギーに分裂する。磁気量子数という名前のいわれはこれから来ている。

電子殻と軌道

主量子数 n と軌道の種類( s , p , d , f , g , h , i )を組み合わせて軌道を表す。

電子殻 ｎ 軌道 軌道の個数

s p d f g h i

K殻 1 1s 1= 1

L殻 2 2s 2p 4= 1+3

M殻 3 3s 3p 3d 9= 1+3+5

N殻 4 4s 4p 4d 4f 16= 1+3+5+7

O殻 5 5s 5p 5d 5f 5g 25= 1+3+5+7+9

P殻 6 6s 6p 6d 6f 6g 6h 36= 1+3+5+7+9+11

Q殻 7 7s 7p 7d 7f 7g 7h 7i 49=1+3+5+7+9+11+13

主量子数 n の軌道の個数

n2=(s軌道数)1+( p軌道数)3+⋯+(方位量子数n−lの軌道数)(2n−1)=∑
k=1

n

(2k−1)  
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§8. 3次元シュレーディンガー方程式

波の一般式 y=Asin(k x−ωt) の意味を再確認する。 k=
2 π
λ

より k x=2 π
x
λ

は原点

から座標 x までの波長 λ の個数
x
λ

を 2π 倍して位相化したものである。

空間中を一様な波長 λ の波が進むとし、その波の進行方向の単位ベクトルを n⃗ とする。

空間中の座標 P (x , y , z ) とし、原点 O から P までの波長 λ の個数 N とする。

r⃗=O⃗P とし、 OP と n⃗ の間の角度を θ とすると、図より

N=
∣⃗OP∣cosθ

λ
=

∣⃗n∣∣⃗OP∣cosθ
λ

=
n⃗ ˙⃗OP
λ

=
1
λ
n⃗ ˙⃗r

これを位相化すると 2π N=
2π
λ
n⃗ ˙⃗r

ここで波数ベクトルを k⃗=
2 π
λ
n⃗=(k 1, k2, k3) とすると、

∣⃗k∣=2π
λ

であり、 2π N= k⃗ ˙⃗r

3 次元の波の一般式は ψ=Asin (k⃗ r⃗ – ωt) となる。

オイラーの公式を使うと ψ=Aexp i( k⃗ ˙⃗r – ωt)  

1 次元の式 E= h̄ω
p=h̄ k

を 3 次元に拡張すると
E= h̄ω
p⃗=h̄ k⃗

これから
ω=

E
ħ

k⃗=
p⃗
ħ

  

p⃗=( p1, p2, p3) とすると ψ=Aexp i(
1
ħ
p⃗ ˙⃗r –

E
ħ
t)=A exp i (

1
ħ
( p1 x+p2 y+ p3 z )–

E
ħ
t)  

1階偏微分は

ħ
∂ψ
∂ x

=i p1ψ ħ
∂ψ
∂ x

=i p1ψ ħ
∂ψ
∂ x

=i p1ψ ħ
∂ψ
∂ t

=−i Eψ → i ħ
∂ψ
∂ t

=E ψ (1) 

(
∂ψ
∂ x

,
∂ψ
∂ y

,
∂ψ
∂ z

)=grad ψ=∇ψ とおくと(∇は「ナブラ」と読む。) −i ħ∇ψ= p⃗ψ

ここから 3次元運動量演算子は P=−i ħ∇ 　となる。

2階微分は

ħ2 ∂
2ψ

∂ x2 =− p1
2ψ ħ2 ∂

2ψ
∂ y2 =− p2

2ψ ħ2 ∂
2ψ

∂ z2 =− p3
2ψ

∆ψ=
∂

2ψ
∂ x2 +

∂
2ψ

∂ y 2 +
∂

2ψ
∂ z2

とおくと ( ∆ は「ラプラシアン」と読む。) p1
2
+ p2

2
+ p3

2
=p2 より

−ħ2 ∆ψ=p2ψ  

これより、運動エネルギー T=
1
2
mv2

=
(mv)2

2m
=
p2

2m
の量子化で使う演算子は P2

=−ħ2∆

ψ を一般の関数とする。(1)の E を量子化されたハミルトニアン H で置換して

i ħ
∂ψ
∂ t

=H ψ (3次元シュレーディンガー方程式)
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§9. 原子内電子のシュレーディンガー方程式

[運動エネルギー T の書き方]1 次元の場合から初めて 3 次元へ拡張する。

量子化 p  → −i ħ
∂
∂ x

より p2  → (−i ħ
∂
∂ x

)
2

=−ħ2 ∂
2

∂ x2 を使って

運動エネルギー
1
2
mv2

=
(mv )2

2m
=
p2

2m
を量子化すると T=−

ħ2

2m
∂2

∂ x2

これを 3 次元化して T=−
ħ2

2m ( ∂
2

∂ x 2+
∂2

∂ y2 +
∂2

∂ z2)  

ここでナブラ記号 ∇
2
=
∂2

∂ x2 +
∂2

∂ y2 +
∂2

∂ z 2 を使って T=−
ħ2

2m
∇

2

●水素原子のシュレーディンガー方程式

[書き方] クーロン力の位置エネルギー −k
e2

r
=−

1
4πε0

e2

r
, ( k=

1
4 π ε0

 )より

V=−k
e2

r
=−

1
4π ε0

e2

r

ハミルトニアン H=T+V=−
ħ2

2m
∇

2–
1

4π ε0

e2

r

シュレーディンガー方程式は Eψ=H ψ より Eψ=−
ħ2

2m
∇

2ψ –
1

4 π ε0

e2

r
ψ

●ヘリウム原子のシュレーディンガー方程式

２つの電子それぞれの原子核からの距離を r1 , r 2 , 2 つの電子間距離 r12 とする。

電子 2個の運動エネルギー
1
2
mv1

2
+

1
2
mv2

2
=
p1

2

2m
+
p2

2

2m
を量子化して

T=−
ħ2

2m
(∇ 1

2
+∇ 1

2
)

原子番号 Z = 2 とし、電子と原子核(陽子数 2）の間の位置エネルギーは異符号電荷なので

(電子 1) −k
Z e2

r1

=−
1

4πε0

Z e2

r1

 （電子 2） −k
Z e2

r2

=−
1

4πε0

Z e2

r2

２つの電子の間の位置エネルギーは同符号電荷なので k
e2

r12

=
1

4πε0

e2

r 12

V=−
1

4 π ε0

Z e2

r 1

−
1

4 π ε0

Z e2

r 2

+
1

4π ε0

e2

r 12

 

ハミルトニアン H=T+V=−
ħ2

2m
(∇ 1

2
+∇ 1

2
)−

1
4π ε0

Z e2

r1

−
1

4π ε0

Z e2

r2

+
1

4π ε0

e2

r12

 

シュレーディンガー方程式は Eψ=H ψ より 

Eψ=−
ħ2

2m
(∇ 1

2
+∇ 1

2
)ψ−

1
4π ε0

Z e2

r1

ψ−
1

4 π ε 0

Z e2

r 2

ψ+
1

4π ε0

e2

r12

ψ  

第 1項は電子の運動エネルギーの総和である。

第 2項と第 3項は電子の位置エネルギーである。

第 4項は電子間の位置エネルギーである。
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