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§A 電気量と電流

  電荷と電気量の違いは何か？簡単に言うと、電気を帯びたものを電荷といい、その電荷の大きさを数字で表

すものが電気量である。電荷と電気量の本来の意味は違うが、実際には同じ意味で使われている。

　電気量は次のように決められる。ファラデー定数 9.65×104(C /mol ) より

　電子 6.02×1023 個が電気量 −9.65×104(C ) に相当するから

−1(C ) は
6.02×1023(個)

9.65×104(C )
=6.24×1018 個分の電子に相当する。

C も mol も個数の単位なので相互変換できる。

  １秒間当たりに移動する電気量を電流という。これは1秒間に流れた電子の数を表す。

 t (s) に流れた電気量が q (C) とすれば、電流 i(A) は

 i=
q
t

[A1]

　ただし、電子は負の電荷なので、電子の移動する方向と電流の向きは正反対になる。

§B クーロンの法則

クーロンが1785年 にねじり天秤を用いた実験により、2点間の電荷に働く力を測定した。

電気量 q1,q2(C ) の２つの点電荷の距離 r 、力の大きさ F (N ) 、定数 k=9.0×109  

F=k
q1q2
r 2

=
q1q2
4π ε0 r

2   [B1]

F>0 ならば、反発力、 F<0 ならば、引力である。 ε 0 (真空の誘電率)

§C 電場と電位

 +1(C ) の電荷に働く力 E を電場(電界)という。電気量 q (C) の電荷に働く力は次のようになる。

F=q E [C1]

 [D1]を点電荷の場合に確かめよう。

電気量 Q(C ) の点電荷から距離 r (m) の電場はクーロンの法則から E=k
Q×1

r 2
=

k Q

r 2
[C2]

同じ点で +1(C ) の電荷を q (C) の電荷に置き替えた時の力は F=k
Qq

r2
=q E で[C1]が成立している。

電場 E=一定 の時、電荷 +1(C ) を距離の座標 x1 から x2 まで Δx=x2−x1 動かす仕事は

ΔV=E Δ x [C3]   これを V=E x [C3']とも書く

これが位置エネルギー＝電位になる。単位(V)ボルト。。

q (C) を Δ x 動かす仕事は ΔW=F Δ x=q E Δ x=q ΔV より

ΔW=q ΔV [C4]

ΔV =V 2 –V 1 として[C4]を Q−V グラフで表すと、その仕事はその面積

S=q ΔV=ΔW で表せる。２点間の電位の差 ΔV を電圧という。

§D コンデンサーの静電容量

  高校物理において、コンデンサーは合同な2枚の金属板を平行に並べたものである。

　電池を接続すると、電圧の高い方(＋極)に接続された金属板には正の電気量Q(C)が、低い方には負の電

気量-Q(C)が蓄積される。正負の電気量の絶対値は等しい。

　　蓄積された電気量 Q 電圧 V とすると､比例関係 Q=C V [D1]

比例定数 C を静電容量または容量という。単位(F)ファラッド=C / V

電気量 0 からQまで蓄電した時の仕事は(E2)より Q−V グラフの面積に等しい。

S=ΔW=
1
2
qV=

1
2
C V 2

[D2}これが静電エネルギーである。

Copyright (C) 2021 Yuuichi Takaku All rights reserved.



§E 電気力線とガウスの法則

　正電荷から負電荷へ電場の向きに線をつなぐと 1 本の電気力線となる。この線は途中で発生や消滅しない。

[電気力線の本数の定義]

電気量 Q の電荷から延びる電気力線の全本数 N は Q に比例すると定義する。

比例定数を 4 π k=
1
ε 0

とすると ( ε 0 を真空の誘電率という。)

N=4π k Q=
Q
ε0

[E1]

電気力線の方向は電場の方向と同じである。

[ガウスの法則]  電気力線の面積密度は電場に等しい。

球の中心を点電荷 Q(C ) の位置、半径 r とする。球の表面積は S=4π r2

これと E=
k Q

r 2
から E×S=

k Q

r2
×4π r 2=4π k Q=N  → E=

N
S

[E2}　

ガウスの法則から次のようにクーロンの法則を導くこともできる。 E=
N
S

=
4π k Q

4π r2
=

k Q

r 2

クーロンの法則とガウスの法則は必要十分条件の関係にある。

§F コンデンサーの極版間の電気力線

ガウスの法則をコンデンサーに使おう。

 [D1]よりコンデンサーの式は Q=C V [F1]

 極板間の距離 d  電場 E とすると[C2]から E d=V [F2}

 ただし、Eは極板間の外ではゼロとする。

 極板の面積 S とすると, ガウスの法則から E S=
Q
ε0

[F3] 

 [F2]と[F3]から E を消去して Q=ε0
S
d
V これと[F1]を比較して

C=ε 0
S
d

[F4] 

 コンデンサーの極板間を誘電体が占める時、その表面に現われる分極電荷によって、蓄積される電気量が

増える。その電気量 Q ' その容量 C ' とすると Q '=C ' V である。 C '=ε
S
d

となるように誘電体の誘電

率 ε をきめると ε>ε 0 これより、比誘電率は ε r=
ε
ε0

>1

§G 電束

　電束は高校物理では扱われないが、磁束と磁束密度の関係を理解するためのモデルになる。

(i)電気力線の本数が変わる場合がある。

  電気力線の本数は増減しないものと考えたいが、それが成立しない場合がある。

  コンデンサー極板間距離を 2d その中の d は真空、残りの d に誘電体がある時、電荷 Q として、

真空部分の電気力線は N=E S=
Q
ε0

[G1] 　誘電体内の電気力線は N '=E ' S=
Q
ε

[G2]

 ε 0<ε より N>N '  つまり誘電体の表面で電気力線の本数が変化している。

(ii)誘電体内外でも変わらない本数の数え方を定義する。

　誘電体の内外で電気力線の本数が変わる原因となる ε 0 と ε の違いを取り込む新しい本数を電束とし

φe=εN [G3]

と定義する。真空の場合は

φe=ε0 N [G4]

誘電体の外側と内側では[I1][I2]より φe=ε0 N=Q=ε N '=φe となって電束は変化しない。

電束の面積密度は D=
φe

S
=

ε N
S

=ε
E S
S

=ε E [G5] となり、電束密度という。
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§H 磁力線と磁場

磁石と電磁石の類似性

　磁石のN極とS極について、異なる２つの極は引き合うが、同じ

２つの極は反発する。

　円電流の流れる向きを右ねじの回転の向きと考え、右ねじが進

む方向を円電流のN極、逆向きをS極とすると、磁石と同様の性

質を持つ。これを右ねじの法則という。

　N極とS極が引きあうことから、同じ向きに流れる２つの円電流は

引き合い、N極とN極、またはS極とS極が反発することから逆向き

に流れる2つの円電流は反発することがわかる。

マクロな視点では、磁石の内部にも円電流があり、

これが磁力の元になっていると考える。

ミクロな視点では、スピンといって電子自身が自

転しており、これが磁力の元になる。

　電磁石の外部をN極からS極へ向

かう向きに磁力線があると想定し、

その接線方向に磁場 H というベ

クトルを考えると、内部ではS極から

N極へ磁力線が通ることがわかる。

  この時の局所的な電流の向きと磁

場の向きを図にすると、右の図のよ

うになる

右図のように磁場の中に電流 i を

置くと、同じ向きに流れる電流同士は

引き合うことから、電流の向き、磁場

の向き、力の向きにフレミング左手の

法則が成り立つことが確認できる。

電流 i が長さ L (m)の導線を流れるとき、 i×L を電流素片という。

アンペールが右図の実験により、平行な電流間に働く力を測定し、その

結果を1822年に数式化した。

電流 I から距離 r （ｍ）にある電流

素片 i L に働く力 F (N)は、

比例定数 C  として

F=C
i L I
r

[H1]
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★電流素片

電気量 q (C)の電荷が速度 v (m / s)で等速直線運動する時、時間 t (s)の間に、この電荷がすすむ

距離は L=v t (m)、この電荷による電流は i=
q
t

この2式から t を消去すると電流素片の別表現が得られる。　 q v=i L [H2]

★磁場Hの大きさ

　[H1]を電流 i に関係する部分と関係しない部分の積に書き直すと F=(iL)×(C
I
r
)

さらに、磁場 H は電流 I の周囲を1回転していること、その周囲の長さが 2π r であることを参考にして

C
I
r
=2π C

I
2π r

のように書き直すと F=(2π C)×(iL)×
I
2π r

ここで、 2π C=μ0 （真空の透磁率)、 H=
I
2π r

[H2]（アンペールの法則)とおくと、[H1][H2]より

F=μ0(iL)H = q v (μ0H ) [H3}   (ローレンツ力の公式)

確認したように、電流 i (正電荷 q の流れ) 、磁場 H 、力 F の間にフレミング左手の法則が成立する。

B= μ H (T)[H4] (磁束密度)とおくと、ローレンツ力は F=q v B = i L B   [H5]

★導体棒の電圧

　長さ L の導体棒が、磁場 H に垂直に置かれ、棒自身と

磁場の両方に垂直な方向に速さ v で移動する時、ローレン

ツ力により導体内の正電荷は P 端へ、負電荷は Q 端へ

移動する。すべての電荷の移動が終わる時、 P ,Q 両端の電

荷による電場 E とローレンツ力が釣り合う。

　導体内の電荷を q とすると、 q E=qv B → E=v B

これより、両端の電圧は V=E L=v B L [H6]

時間 Δt (s) に導体が磁場中を移動する距離は x=v Δt

導体が磁場を横切る面積は Δ S=x×L=v Δt L (1)

(1)と[H6]より導体両端の電圧は V=
B ΔS
Δt

(2)

ここで磁束 φ=B S を定義すると、

磁束の変化量 Δφ=B Δ S (3)は導体を横切る磁束量となる。

(2)(3)より V=
Δφ
Δ t

[H7] (ファラデーの電磁誘導の法則)

　導体が磁場中を移動する時、導体が磁力線を横切っているとみ

なせる。これを磁力線側から見ると、磁力線が導体を横切っている

とみなすこともできる。この時に磁力線は正電荷に対して磁力線の

進行方向から見て左向きにローレンツ力を発生させていることにな

る。これを次のようにまとめる。

※磁力線が導体を横切る時、磁力線の進行方向から見て左向きにローレンツ力を発生させる。

★レンツの法則

　磁場中の環状導体において、環内の磁束の変化量 Δφ は環状導体を横切った磁束量なので、環状導体

内の電圧(誘導起電力)について[H7]が成立する。

　環内磁束が減少する時は左側の図の方向に、増加するときは右側の図の方向に誘導電流が生じている。

これをレンツの法則としてまとめると、

「磁束の変化を妨げる向きに誘導電流

が生じる」

ファラデーの法則において、妨げる向

きを考慮すると V=−
Δφ
Δt
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★磁気量

　磁力の元はすべて電流であると考えるなら、磁力の元になる磁荷は存在しないことになる。しかし、理解や

計算のしやすさという理由から、仮想的に磁荷を考えることはある。実体のないものを想定するのであるから、

その決め方は任意である。その決め方として、力と電場の関係式とローレンツ力の公式を比較する方法がある。

仮想的磁荷の磁気量 qm の定義するにあたって電場と力の関係式とローレンツ力を比較する。

(1) F=q E F=q v B 及び E と B の対応から qm=qv と定義すると F=qm B

(2) F=q E F=μ qv H 及び E と H の対応から qm=μq v [H4]と定義すると F=qm H [H5]

本稿では、E-H対応の立場で（仮想的な）磁荷を使う。磁気量の単位は wb という。

　磁気量 1(wb) に働く力 H を磁場(磁界)とすると磁気量 qm に働く力は F=qm H [H5]

本稿で定義した磁気量の注意点をまとめる。

１．電気量に向きはなく、力と電場の向きは平行であるが、磁気量の向きは、磁気の元となる電流の向きと同じ

であり、磁場の向き、力の向き、それぞれと直交している。

２．磁気量が円電流を元にした場合でも、磁気量の向きは円電流によるN極と同じではない。

３．磁気量の向きと磁場の向きのなす角 θ の時、磁場の直交成分 H ' = H sin θ だけが力に関係する。

F=qm H ' = qm H sinθ [H6]

§I　磁荷についてのクーロンの法則、そしてビオ・サバールの法則へ

磁石が原子内電子による円電流の集合体と考えるならば、磁荷は金属原子数に比例すると考えられる。

クーロンはねじり天秤実験装置により、磁荷についてのクーロンの法則を示した。

磁気量 qm1 , qm2(C ) の２つの点磁荷の距離 r 、力の大きさ磁 F (N )

F=k '
qm1qm2

r2
[I1]

H=k '
qm1

r2
[I2}と置くと F=qm2 H [I3}となる。

図からもわかるように、この法則は磁気量の向きと力の向き（ABの向き)が直交する時に限って成立する。

平行でない時は qm1 と H のなす角 θ とすると[I2}[H6]から

H ' = k '
qm1sinθ

r 2
[I4]より F=qm2 H ' = k '

qm1qm2

r2
sin θ

[I4]に qm1=μ0 I L を代入すると H=k ' μ0
I L sin θ

r2
[]I5](ビオ・サバールの法則)
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ビオ・サバールの法則から直線電流 I が作る磁場を求める。

電流素片の位置を Q 、 P から直線への垂線の足を R

 θ=∠ PQ R 、 a=P R " l=Q R 、 PQ=r とすると tanθ=
a
l

、 cosθ=
l
r

より

 l=
a

tanθ
を微分して Δl=−

a

sin2θ
Δθ 、

1
r
=

cosθ
l

=
cosθ×tanθ

a
=

sinθ
a

  

 これらの関係式を式⑤に代入すると,この部分が作る磁場は ΔH=(
I sinθ
4 π a

)Δθ ΔH=k ' μ0(
I sinθ
a

)Δθ

直線上のすべての電流が作る磁場は H=∫
0

π

k ' μ0(
I sinθ
a

)d θ=2 k ' μ0
I
a

アンペールの法則 H=
I
2π r

と比較して、 k '=
1

4π μ0
[I6]

改めてビオ・サバールの法則を書くと、 ΔH=
I Δ L sin θ

4π r 2
[I7]

インダクタンス L

閉回路 A の一定電流 I とし、閉回路内部 C の点 P する。



[Q2]より、電流素片 Δl による P の磁界は ΔH P=
sinθ

4π r2
Δl I

ここで
sin θ

4π r2
は点 P で決まるので、 f (P)=

sin θ

4π r 2
とおくと ΔH P= f (P)Δl I

閉回路上のすべての電流素片による磁界を重ねると

閉回路 A 上の積分 H P=∫
A

dH P=∫
A

f (P)dl I となる。ここで hP=∫
A

f (P)d l とおくと

H P=hP I

閉回路内部 C の磁束 φ=∫
C

B d S=∫
C

μ H Pd S=∫
C

μhP d S×I

ここで L=∫
C

μhP d S とおくと φ=L I   [Q3] Lをインダクタンスという。

★磁位

磁位 U m とは、磁場 H 中で1(wb)の磁荷を距離 x (m)動かしたときに蓄えられる位置エネルギーである。
U m=H× x

直線電流を中心に半径rの円周上を1wb動かしたときの磁位は、 x=2π r より U m=
I
2π r

×2π r = I

1(C)の電荷を動かして、元の位置に戻しても電位は変わらないが、この場合の磁位は I だけ変化する。

§J 磁束と磁束密度

[E1]の電気力線の式 N=
q
ε

から電束 φe=εN [G3]を定義したように

[H3]の N m=
qm

μ
から磁束を次のように定義する。これは透磁率の異なる物質でも変化しない。

φ=μ N m [J1]

磁束の面積密度は B=
φ
S
=

μM
S

=
μ H S
S

= μ H [J2]  となり 磁束密度と呼ばれる。

電流素片から磁荷へ向かう直線と電流の向きとのなす角 θ とすると F=IB Lsin θ [J4]



§M 電磁誘導

磁界中の導体棒

一様な磁場があり、その磁束密度を B とする。長さ L の導体棒が磁界に垂直にあり、棒と磁界の両方に

垂直な方向に速さ v で運動する。

導体中の電荷 e (C ) (e<0) の電子に働く力はローレンツ力の公式により、

F=e v B 　力の向きはフレミング左手の法則にしたがう。

電場の定義より
F=e E

以上から E=v B

導体棒の両端の電圧は V=E L=v B L [M1]　　この V を誘導起電力という。

ここから、ファラデーの電磁誘導の公式が導かれる。

[電磁誘導]  単位時間当たりに導線を通過する磁束は導線の両端の電圧に等しい。

Δt 秒間に導体棒が進む距離は v Δt

導体棒が通過した領域の面積は Δ S=(v Δt)L

導体棒を横切る磁束は Δφ=B ΔS=B(v Δt)L →
Δφ
Δt

=Bv L=V

∴ V=
d φ
d t

[M2]

電流閉回路において、閉回路内部の磁束変化 Δφ とすると、

Δφ は閉回路を横切って、閉回路内部に出入りしたので、この場合も[M2]が成立する。

§N 単振動エネルギー

コイルの磁場エネルギーは[E2]より ΔW=Q ΔV=( I Δt)(L
Δ I
Δt

)=L I Δ I

これを積分して E=W=∫ dW =L∫ I d I=
1
2
L I 2 [N1]

容量 C "のコンデンサーと自己インダクタンス L のコイルで１つの閉回路を作る時、次が成り立つ。

 E=
1
2
Q2

C
+
1
2
LI 2=一定 [N2] 

証明は
dE
dt

=0 による。

d E
d t

=
Q
C

dQ
d t

+L I
d I
d t

=
Q
C

I−I V=V I−I V=0  

V=
Q
C

=−L
d I
d t

に I=
d Q
d t

を代入すると Q=−LC
d 2Q
d t 2

これに Q=Q0sin (ωt) を代入すると

ω=
1

√LC
ω=

2π
T

より振動の周期は T=√LC [N3]
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§Q ビオ・サバールの法則を導く (※この項目は参考として掲載)

磁気量 qm についての磁場は[L2]より H=
qm

4 π μr 2

流れる電流素片を I Δl とすると [K3]から F=I B Δ l sin θ これに[N2] B=μ H を代入して

F=I B Δl sinθ=μH I Δl sinθ=(
I Δl sinθ

4π r2
)qm [Q1]

作用反作用の法則から、磁荷 qm には反対方向に同じ大きさの力が働く。よってその位置に磁場 ΔH が

あることになる。磁荷 qm に働く力は[K1]より F=qm ΔH

 [Q1]と[K1]からビオ・サバールの法則 ΔH=
I Δl sinθ

4π r2
 [Q2] が導かれる。

直線電流 I が作る磁場をビオ・サバールの法則から求めてみよう。

電流素片の位置を Q 、 P から直線への垂線の足を R

 θ=∠ PQ R 、 a=P R " l=Q R 、 PQ=r とすると tanθ=
a
l

、 cosθ=
l
r

より

 l=
a

tanθ
を微分して Δl=−

a

sin2θ
Δθ 、

1
r
=

cosθ
l

=
cosθ×tanθ

a
=

sinθ
a

  

 これらの関係式を式⑤に代入すると,この部分が作る磁場は ΔH=(
I sinθ
4 π a

)Δθ

直線上のすべての電流が作る磁場は H=∫
0

π

(
I sinθ
4π a

)d θ=
I
2π a

アンペールの法則の再証明。

インダクタンス L

閉回路 A の一定電流 I とし、閉回路内部 C の点 P する。

[Q2]より、電流素片 Δl による P の磁界は ΔH P=
sinθ

4π r2
Δl I

ここで
sin θ

4π r2
は点 P で決まるので、 f (P)=

sin θ

4π r 2
とおくと ΔH P= f (P)Δl I

閉回路上のすべての電流素片による磁界を重ねると

閉回路 A 上の積分 H P=∫
A

dH P=∫
A

f (P)dl I となる。ここで hP=∫
A

f (P)d l とおくと

H P=hP I

閉回路内部 C の磁束 φ=∫
C

B d S=∫
C

μ H Pd S=∫
C

μhP d S×I

ここで L=∫
C

μhP d S とおくと φ=L I   [Q3] Lをインダクタンスという。
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§R 電磁波の速さを計算する (※この項目は参考として掲載)

　電場の時間変化が磁場を発生させ、磁場の発生がさらに電場を発生させる。この連鎖反応により、電場と磁

場の波が発生する。これを電磁波という。ここではその速さを求めよう。

真空中では電気力線の本数は距離によって変わらない。
d N
d x

=0 これに N=E S を代入すると

0=
d N
d x

=
d (E S )

d x
=(

d E
d x

S+E
d S
d x

) ⇒ E
d S
d x

=−
d E
d x

S [R1]

磁力線についても同様に H
d S
d x

=−
d H
d x

S [R2]

 [O2] E=
μ S
2π r

d H
d t

において S=π r2 とおくと 2π r=
d S
d r

となるので E
d S
d r

=μS
d H
d t

 r=x と置きなおして E
d S
d x

=μS
d H
d t

[R3]

 [O1] H=
ε S
2π r

d E
d t

からも同様に H
d S
d x

=ε S
d E
d t

[R4]

 [R1]と[R3]から μ
d H
d t

=−
d E
d x

[R5]

 

 [R2]と[R4]から ε
d E
d t

=−
d H
d x

両辺を t で微分して ε
d 2 E
d t 2

=−
d
d t

d H
d x

=−
d
d x

d H
d t

 [R5]を代入して μ ε
d 2 E
d t2

=
d 2E
d x2

[R6]

 これに波の一般式 E=E0 sin(2π (
x
λ
−

t
T

)) を代入すると
μ ε

T 2
=
1

λ2

 

 よって電磁波の速さは c=
λ
T

=
1

√ με
ε=8.854×10−12

(F /m) , μ=1.257×10−6
(H /m) を代入して c=2.998×108(m / s) を得る。

これが光の真空中の速さと一致することから、光が電磁波の一種だと考えられた。 

※ここでは t による微分と x による微分を
d
d t

,
d
d x

と書いたが、数学の正式な書き方では2つの変数が

互いに関係なく微分できることを示すために
∂
∂ t

,
∂
∂ x

と書く。高校では扱わないので、この稿では高校数学

の書き方にした。

[あとがき]

　この稿では磁気量を定義し、1単位の磁気量に働く力を磁場と定義した。1単位の電気量に働く力である電

場と同じように、磁場を理解できるからである。しかし、N極だけの磁石を取り出すことはできないことからもわか

るように、磁気量はN極の磁気量とS極の磁気量が必ず一緒になって現われるので、合計の磁気量はゼロに

なる。それで、通常は磁場を磁気量を使わないで定義するが、これがまた理解しにくい。

　電気量を電子の個数の単位だと割り切る書き方や、ガウスの法則を書くに当たり、電気力線の本数をいきな

り電気量で定義する書き方も、通常の電磁気学とは違う書き方であるが、これもわかりやすさを優先させたた

めである。高校物理の範囲を超えたものもあるが、ここで説明した公式そのものは、高校物理の公式と同じで

あるから、試験で使っても問題ない。
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