
熱力学のポイント

◆熱力学の用語

気体の状態量

　気体の状態は、状態量によって一意に指定される。状態量には次の 4 つがある。

種類 状態量

示強変数　(気体の物質量によって変化しない) p (圧力), S (エントロピー)

示量変数　(物質量に比例する) V (体積), T (絶対温度)

　これら以外にも内部エネルギー U やエンタルピー H などがあるが、ここでは気体の状態を一意に指定

するために上記の 4 つを考える。

　気体の状態量が指定できるためには,気体全体について p , S , V , T いずれもが均一でなければ

ならない。気体全体で温度や圧力が均一でない場合でも、時間が経過するにつれてやがて均一になる。その

後の状態は時間が経過しても変化しない。熱力学的平衡とは、このように時間が経過しても気体(系)の状態

が変化しないことであり、これには、力学的平衡、熱平衡、化学的平衡が含まれる。

力学的平衡 系内の圧力が均一な状態

熱平衡 系内の温度が均一な状態

化学平衡 化学反応における各成分の化学ポテンシャルが均一な状態

　この条件で p , S , V , T から任意の２つを独立変数に選べば、他の２つはその従属変数となる。

準静的変化（準静的過程 : quasistatic process）と準静的でない変化

　準静的変化とは、気体が熱力学的平衡を保ったまま、状態量が変化することである。熱力学的平衡とは、時

間が経過しても気体の状態が変化しないことであるから、状態量が変化する過程は、厳密には熱力学的平衡

とはいえない。そこで、その変化を非常にゆっくりと行うことによって、仮想的に熱力学的平衡として扱う。

　準静的でない変化とは、熱力学的平衡を保たないで状態量が変化することである。この場合でも、変化後に

熱力学的平衡になるので状態量はこの熱力学的平衡のもとで決める。「準静的変化」および「準静的でない

変化」をともに状態変化という。

　状態変化では気体は外部との間で熱量や仕事の収受をしていることに注意しなければならない。気体が外

部から熱量を吸収する場合や外部へ放出する場合、気体が外部から仕事をされる場合や外部へ仕事をする

場合のように収受には向きと量がある。

　圧力 p =一定の条件で体積が増減する時の仕事を計算する。

　面積 S のピストンとシリンダーに閉じ込めた気体において、ピストンに働く力は F=p S であり、

　ピストンの移動距離 x とすると、体積増減分は ΔV =S x

　したがって、ピストンのする仕事は W =F x=( pS ) x= p(S x )= p ΔV より  W =p ΔV となる。

気体の体積の増減 仕事

(増加) ΔV 気体が外部へする仕事 W =p ΔV

(減少) −ΔV 気体が外部からされる仕事 W =−p ΔV
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過程

　過程とは２つの状態量による状態変化のグラフのことである。状態 A と状態 B が同一グラフ上にあり、

①状態 A から状態 B への状態変化

②状態 B から状態 A への状態変化

これらの変化が共にそのグラフに沿って起きる場合、後者を前者の逆過程という。

可逆変化(可逆過程)と不可逆変化

　ある過程と、その逆過程において、気体と外部との間でやり取りした熱量や仕事の向きが逆で、大きさは等

しい場合、元の過程を可逆変化という。 

　多くの教科書で、準静的変化は可逆変化と同義と紹介しているが、摩擦その他のエネルギーや仕事の散逸

がある場合には例外となる。その例として、ピストンとシリンダーによる装置で摩擦力が発生する場合を考える。

ここで状態変化はすべて準静的変化であり、熱量の出入りはないと仮定する。

　外部が気体へ仕事 W を加える時、摩擦力によって失われる仕事 W 0 とすれば、結局,気体が外部から

受け取る仕事は W −W 0 である。

　気体を元の状態に戻すためには,気体が外部から受け取ったのと同量の仕事 W −W 0 を外部へしなけれ

ばならないが、この時にも摩擦力によって W 1 の仕事が失われる。結果、外部が気体から受ける仕事は
W −W 0−W 1 である。

外部が気体へした仕事 W

外部が気体から戻された仕事 W −W 0−W 1

　元の過程と逆過程では準静的変化であるにもかかわらず、気体と外部の間でやり取りした仕事は異なって

いるのでこの過程は可逆変化ではない。

可逆変化の必要十分条件は、ある状態変化において

1. 準静的過程であること

2. 粘性、摩擦、非弾性、電気抵抗、磁気ヒステリシス、等によるエネルギーの散逸が生じないこと。

以上の 2点を満たすことである。

　文献によって用語の定義に相違や曖昧さがあり、 可逆過程と準静的過程を同義に使う文献もある。そして、

熱力学では、摩擦などによるエネルギーの散逸を考慮することはほとんどない。

　元の過程とその逆過程において、気体と外部との間でやり取りした熱量や仕事の大きさが異なる場合、元の

過程をを不可逆変化という。

　準静的でない変化では、気体の圧力や温度が均一でない状態が起こる。この状態が熱力学的平衡になる

までの間に、仕事の一部が乱流の発生に使われたり、エントロピー増加による熱量 d ' Q=T d S が発生した

りするので、元の過程と逆過程とでは、外部との間でやり取りする熱量や仕事は異なってくる。したがって、準

静的でない変化は不可逆変化の一つである。
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熱力学の第一法則からエントロピーへ

熱力学第一法則[first law of thermodynamics]の微分形

熱力学の第一法則 Qi n=ΔU+W out において、 ΔU =nCv ΔT , W out=∫
V 0

V

pd V とすると

Qi n=nC v ΔT+∫
V 0

V

pd V この式の微分形を考える。 状態変化として次の 2通りを仮定する。

( p0,V 0,T 0) から ( p+d p ,V +d V ,T +d T ) へ　→　 Qi n '=nC v (T+d T−T 0)+ ∫
V 0

V+d V

p d V

( p0,V 0,T 0) から ( p ,V ,T ) へ　→　 Qi n=nC v (T−T 0)+∫
V 0

V

p d V

片々引くと Qi n '−Q i n=nC v d T + ∫
V

V+d V

p d V

ここで d ' Q=Qi n−Qi n , ∫
V

V+d V

p d V = pd V とおくと微分形 d ' Q=nC v d T +p d V  (T1) となる。

断熱変化の場合は d ' Q=0 より d T=−
1

nC v

pd V (T2)

理想気体[ideal gas]の状態方程式を微分する

pV =n R T を T で微分すると
d ( pV )

d T
=

d (n RT )

d T →
d p
d T

V+ p
d V
d T

=n R

→ V d p+ pd V=n R d T → d T=
1

n R
(V d p+ pd V ) (I1)

ポアソンの公式

(T2)(I1)より −
1

nC v

pd V =
1

n R
(V d p+p d V ) 整理すると C v V d p+(C v+R) p d V =0

マイヤーの式 C p=Cv+R より C vV d p+C p p d V =0

変数分離形にすると C v
d p

p
=−C p

d V
V → C v log p=−C plogV +Const → log p+

C p

C v

logV =Const

γ=
C p

C v
とおくと log( pV γ

)=Const → pV γ
=Const (ポアソンの公式)

理想気体の状態方程式より p=n RT V −1
を代入すると T V γ−1

=Const

等温変化の W out

状態 ( p1,V 1,T 0) から ( p2,V 2,T 0) への等温変化において T=T 0  (一定)とする。

理想気体の状態方程式より p=n RT 0
1
V だから

W out=∫
V 1

V 2

pd V = n R T 0∫
V 1

V 2

1
V

d V = n RT 0[ logV ]V 1

V 2

= n RT 0(logV 2−logV 1)=T 0n R log(V 2/V 1)

断熱変化の W out

状態 ( p1,V 1,T 1) から ( p2,V 2,T 2) への断熱変化において p1V 1=n R T 1 , p2V 2=n RT 2

pV γ
= p1V 1

γ
= p2V 2

γ
(一定)より p= p1V 1

γ V −γ

W out=∫
V 1

V 2

pd V= p1V 1∫
V 1

V 2

V −γ d V = p1V 1
γ [
1
1−γ

V 1−γ]
V 1

V 2

=  
p1V 1

γ

1−γ
(V 2

1−γ
−V 1

1−γ
)

= 
1
1−γ

( p1V 1
γ V 2

1−γ
−p1V 1

γ V 1
1−γ

) = 
1
1−γ

( p2V 2
γ V 2

1−γ
−p1V 1

γ V 1
1−γ

) = 
1
1−γ

( p2V 2−p1V 1)

= 
1
1−γ

(n R T 2−n R T 1) = 
n R
1−γ

(T 2−T 1)
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カルノーサイクル
A( pA ,V A ,T 1)  → B( pB ,V B ,T 1)  (等温変化 )
p AV A= pB V B=n RT 1 (AB1)
W AB=T 1×n R log(V B /V A) (AB2)

B( pB ,V B ,T 1)  → C ( pC ,V C , T 2)  (断熱変化 )
pB V B

γ
=pC V C

γ
(BC1)

W BC=
n R
1−γ

(T 2−T 1) (BC2)

C ( pC ,V C ,T 2) → D( pD ,V D , T 2)  (等温変化 )
pC V C= pD V D=n R T 2 (CD1)
W C D=T 2×n R log(V D /V C) (CD2)

D( pD ,V D , T 2) → A( pA ,V A ,T 1)  (断熱変化 )
p AV A

γ
=pD V D

γ
(DA1)

W D A=
n R
1−γ

(T 1−T 2) (DA2)

(BC1)と(DA1)を片々割って
pB V B

γ

pA V A
γ =

pC V C
γ

pD V D
γ → ( pB

pA
)(V B

V A
)

γ

=( pC

pD
)(V C

V D
)

γ

(AB1)と(CD1)より
pB

pA

=
V A

V B
,

pC

pD

=
V D

V C
を代入して (V B

V A
)

γ−1

=(V C

V D
)

γ−1

→
V B

V A

=
V C

V D
→ log (V D /V C)=log(V C /V D)

−1
=−log (V C /V D)=−log (V B/V A)

(BC2)と(DA2)より W BC+W D A=0
W total=W A B+W BC+W C D+W D A=T 1n R log(V B /V A)+T 2n R log (V D/V C )

 = (T 1−T 2)×n R log(V B/V A)

状態変化 Qi n ΔU (nC v ΔT ) W out

A→B(等温変化) T 1×n Rlog (V B/V A) 0 T 1×n Rlog (V B/V A)

B→C(断熱変化) 0 −
n R
1−γ

(T 2−T 1)
n R
1−γ

(T 2−T 1)

C→D(等温変化) −T 2×n R log (V B /V A) 0 −T 2×n R log(V B /V A)

D→A(断熱変化) 0 −
n R
1−γ

(T 1−T 2)
n R
1−γ

(T 1−T 2)  

以上より Q1=T 1×n R log(V B/V A)

熱効率 η （エータ）= 
W
Q 1

 = 
(T 1−T 2)×n R log(V B/V A)

T 1×n R log(V B/V A)
= 

T 1−T 2

T 1
= 1−

T 2

T 1

W =Q1−Q2 より η  = 
Q 1−Q2

Q1

=1−
Q2

Q1
→

T 2

T 1

=
Q 2

Q 1
→

Q 1

T 1

=
Q2

T 2
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エントロピー

熱力学第一法則の微分形 d ' Q=nC v d T+ pd V を T と V の関数で表すことを考える

微分積分学の公式
∂2 f

∂V ∂T
=

∂2 f
∂T ∂ V

(S0)を仮定しておく。

p=
n RT

V より d ' Q=nCV d T +
n R T

V
d V (S1)

ここで関数 f (T ,V )  が存在して
∂ f
∂T

=nC v , 
∂ f
∂V

=
n RT

V を満たすと仮定すると、全微分の公式から

d ' Q=
∂ f
∂T

d T +
∂ f
∂ V

d V =d f → Q= f (T ,V ) とできるのだが

∂2 f
∂V ∂T

=
∂

∂V
∂ f
∂T

=
∂

∂V
(nC V )=0  , 

∂2 f
∂T ∂V

=
∂

∂T
∂ f
∂V

=
∂

∂T
(
n R T

V
)=

n R
V  

となって(S0)に矛盾する。

そこで(S1)の両辺を T で割って
d ' Q

T
=

nCV

T
d T+

n R
V

d V とし、

S (T ,V ) が存在して
∂ S
∂T

=
nCV

T ,
∂ S
∂V

=
n R
V (S2)

を満たすと仮定すると
∂2S

∂V ∂T
=

∂
∂V

(
nCV

T
)=0 , 

∂2S
∂T ∂V

=
∂

∂T
(
n R
V

)=0

となって(S0)に矛盾しない。

全微分の公式から
d ' Q

T
=

∂S
∂T

d T+
∂ S
∂ V

d V =d S

∴ d S=
d ' Q

T (S3)

　積分形は S=∫
d ' Q

T (S4) 

この S はエントロピー[entropy]と呼ばれる

(S3)からわかることは,熱量の増減がない時は d ' Q=0 から, dS=0 すなわちエントロピーの増減がないこ

と。

(S2)を解くと
S=nCV logT +n R logV +Const  (S5)

これを変形する。

S=nCV (logT+
R

CV

logV )+Const

マイヤーの式 C p=CV +R より
R

CV

=
C p−C V

CV

=
C p

C V

−1=γ−1

S=nCV ( logT +(γ−1)logV )+Const 1 = nCV log(T V γ−1
)+Const 1 (S6)

これに理想気体の状態方程式より T=
pV
n R を代入すると, 理想気体のエントロピーは

S=nCV log( pV V γ−1
)+Const 2=nCV log( pV γ

)+Const 2 (S7)

断熱変化では pV γ
=一定なのでエントロピーは増加しないことが分かる

定積熱容量 C=nC V とおくと
S=C log(T V γ−1

)+Const1=C log( pV γ
)+Const 2
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不可逆変化とエントロピー

温度が高い気体から低い気体へ熱量が移動する。これは不可逆変化[irreversible change]とされている。

A と B を接触させて、熱の移動が起こる場合のエントロピー変化を調べる。体積は一定とする。

気体 A の状態 ( p A , V A , T A) , 定積熱容量 C A ,気体 B の状態 ( p B ,V B ,T B) ,定積熱容量 C B

T A<T B とする。

◆1.初期状態のエントロピー

気体 A S A0=C A logT A+C AlogV A
γ−1

+C1

気体 B S B0=C B logT B+C B logV B
γ−1

+C 1

S=S A0+S B 0=C A logT A+C B logT B+C A logV A
γ−1

+C A logV A
γ−1

+2C1

logV A
γ−1

 = 一定, logV B
γ−1

 = 一定より C2=C A logV A
γ−1

+C B logV B
γ−1

+2C1 とおくと
S 0=C A logT A+C B logT B+C2 (I1)

◆2.変化途中のエントロピー

気体 A の温度変化 ΔT A 気体 A の温度 T A+ΔT A

気体 B の温度変化 ΔT B 気体 B の温度 T B−ΔT B

移動熱量 Q = C A ΔT A=C BT B → ΔT A=
Q
C A

, ΔT B=
Q
C B

 

熱の移動が起こるための条件 T A+ΔT A<T B−ΔT B → T A+
Q
C A

<T B−
Q
C B

(I2)→
0<Q<

T B−T A

( 1C A

+
1

CB
) (I3)

気体 A S A=C A log(T A+ΔT A)+C A logV γ−1
+C1 = C A log (T A+

Q
C A

)+C A logV γ−1
+C 1

気体 B S B=C B log(T B−ΔT B)+CB logV γ−1
+C 1 = C B log (T B−

Q
CB

)+C B logV γ−1
+C1

S (Q)=S A+S B=C A log(T A+ΔT A)+C B log(T B−ΔT B)+C 2 = C A log (T A+
Q
C A

)+C B log(T B−
Q
CB

)+C2

(I2)より

d S
d Q

=C A
1

T A+
Q
C A

1
C A

−CB
1

T B−
Q
C B

1
C B = 

1

T A+
Q
C A

−
1

T B−
Q
C B

> 0 

S (Q) は
0<Q<

T B−T A

( 1C A

+
1

CB
) において単調増加である。

◆3.熱の移動が終わった時のエントロピー

(I3)より移動熱量 Q=
T B−T A

1/C A+1/C B
の時

T A+ΔT A=T B−ΔT B=T E = T A+
Q
C A

= T B−
Q
CB

 = 
C A T A+C BT B

C A+C B
となって,熱の移動が終わる。

気体 A S E A=C A logT E+C A logV γ−1
+C1

気体 B S E B=C B logT E+C B logV γ−1
+C 1

S E A+S E B=(C A+C B) logT E+C 2=S (QE)  
S (Q) の単調増加性により
S (0)<S (Q)<S (QE)

熱の移動があるときは不可逆変化であり、エントロピーは増加する。
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熱力学第2法則

　熱力学第2法則に関する証明のために、熱機関と冷却装置を整理する。

　高熱源の絶対温度 T H , 低熱源の絶対温度 T L とし, これをもってその熱源を指定することにする。

T H>T L

熱機関は１回のサイクルで T H から熱量 QH を吸収し、その一部を仕事 W に変え、残りの熱量 QL

を T L へ放出する。

QH=QL+W (1)

この過程における p−V グラフは単純な閉曲線となり、変化は曲線を時計回りにたどる。

この過程を逆に動かすことにより T L から熱量 QL を受取り、これに仕事 W を加えた熱量 QH を
T H へ放出する冷却装置を実現できる。これは逆サイクルとも呼ばれる。この場合も(1)が成立する。

熱機関と冷却装置をまとめて熱力学サイクル、または単にサイクルと呼ぶ。

熱機関と冷却装置を比較する時、熱量の移動方向や仕事の向きの違いがある。

サイクル QH QL W

熱機関 T H からサイクルへ サイクルから T L へ サイクルが外部へする仕事

冷却装置 サイクルから T H へ  T L からサイクルへ サイクルが外部からされる仕事

向きの違いを次表のような符号で表すことを考えてみる。

サイクル QH QL  W

熱機関 + + +

冷却装置 - - -

この符号と(1)を関連付けてみる。熱機関で QH=Q 1 , QL=Q2 , W =W 0 とおく。

Q1=Q 2+W 0 (2)

この両辺に-1を掛けると

−Q1=−Q 2+(−W 0) (3)

改めて QH=−Q1 , QL=−Q2 , W =−W 0 とおくと,冷却装置における符号と一致する。

熱機関が外部へする仕事を W =W out , 冷却装置が外部からされる仕事を W =W i n と書くことにする。
QH=QL+W oun (4)
QH=QL−W i n (5)
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熱力学第2法則の表現には次のようなものがあり、同値である。

◆クラウジウスの原理

　「低温の熱源から高温の熱源に正の熱を移す際に、他に何の変化もおこさないようにすることはできない。」

　熱の自然な移動は必ず T H から T L へ向かって起こり、 T L から T H へ向かっては起こらない。

　冷却装置で T L から T H へ熱量を移動させるためには必ず QH=QL−W i n における W i n>0 が必要

であり, W i n=0 となるような冷却装置は存在しない。

◆トムソンの原理

　「一つの熱源から正の熱を受け取り、これを全て仕事に変える以外に、他に何の変化もおこさないようにする

熱力学サイクルは存在しない。」

　熱機関では QH=QL+W out において必ず QL>0 となり、 QL=0 となるような熱機関は存在しない。

クラウジウスの原理とトムソンの原理の等価性の証明

対偶によって証明するために,それぞれの否定の意味を考える。

◆クラウジウスの原理の否定
QH=QL−W i n かつ W i n=0 となるような冷却装置が存在する。

◆トムソンの原理の否定
QH=QL+W out かつ QL=0 なる熱機関が存在する。

◆「クラウジウスの原理の否定」ならば「トムソンの法則の否定」の証明

クラウジウスの原理の否定を実現する冷却装置をAとする。この時 QH=QL−W i n かつ W i n=0 である。

冷却装置の符号の決め方から QH=QL=−Q0<0 とおく。

これに次の表の属性をもつ熱機関Cを接続したサイクルをA+Cとする。

サイクル QH QL W  

冷却装置A −Q0 −Q0 0

熱機関C Q0+Q 1 Q0 Q1

A + C(合計) Q1 0 Q1

A+Cは T H から熱量 Q1 を吸収し,それをすべて仕事 W =Q1 に変換している。この時 QL=0

すなわちトムソンの原理の否定が成立する。

◆「トムソンの法則の否定」ならば「クラウジウスの原理の否定」の証明

トムソンの原理の否定を実現する熱機関をBとする。この時, QH=QL+W かつ QL=0 である。

熱機関の符号の決め方から QH=W =Q0>0 とおく。

これに次の表の属性をもつ冷却装置Dを接続したサイクルをB+Dとする。

サイクル QH QL W  

熱機関B Q0 0 Q0

冷却装置D −Q 0−Q1  −Q1 −Q 0

B + D(合計) −Q1 −Q1 0

B+Dは T L から熱量 Q1 を吸収し,それをすべて T H に放出している。この時 W =0

すなわちクラウジウスの原理の否定が成立する。
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熱力学第2法則には他に次のような表現があり、すべて同値である。

◆オストヴァルトの原理

ただ一つの熱源から正の熱を受け取って働き続ける熱機関（第二種永久機関）は実現不可能である。

◆クラウジウスの不等式

◆エントロピー増大則

孤立系、及び断熱系において不可逆変化が生じた場合、その系のエントロピーは増大する。

◆カラテオドリの原理

熱的に一様な系の任意の熱平衡状態の任意の近傍にその状態から断熱変化によって到達できない他の状

態が必ず存在する。

熱効率
QH=QL+W となる熱機関において熱効率 η (イータ)の定義は

η  = 
W
QH

= 1−
QL

QH

カルノーの定理

熱機関の熱源を T H T L とし、 ηC=1−
T L

T H
とおく。この時、熱効率 η は以下のとおりである。 

熱機関 熱効率 η

可逆機関 η=1−
T L

T H

不可逆機関 η<1−
T L

T H

証明

熱機関Aにおいて QH=Q1 , QL=Q2 . W =Q1−Q2 とおく。

カルノーサイクルによる熱機関Cとすると、Cは可逆なので,それによる冷却装置 C̄ とする。
C̄ の属性を次表のように決める。

サイクル QH QL W 熱効率

A Q1 Q2 Q1−Q 2 ηA=1−
Q 2

Q1

C̄ −Q0 −Q2 −(Q0−Q2) ηC=1−
Q2

Q0

A+C̄ Q1−Q 0 0 Q1−Q 0

Q1−Q 0>0 と仮定するとトムソンの原理に矛盾するので、 Q1−Q 0≤0 である。

→ 1−
Q2

Q1

≤1−
Q 2

Q 0
→ ηA≤ηC (1)

(1)はAが可逆か不可逆かのいずれでも成立する。

(i) A が可逆機関の場合

    A による冷却装置 Ā と C を接続すると、同様の計算により ηA≥ηC (2)

      (1)と(2)から ηA=ηC=1−
T L

T H
(3)

(ii) A が不可逆機関の場合

      (1)と(3)により ηA<ηC (4)
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