
完全微分形と積分因子
A 概要

微分方程式
d y
d x

=−
P (x , y )
Q (x , y ) ⇔ P (x , y )d x+Q( x , y)d y=0 （ Q≠0 , 初期条件 x=a , y=b ) ( A1 )

ある関数 u (x , y ) , F ( x , y) が存在して

u (x , y )P ( x , y)=
∂ F ( x , y)
∂ x

, u (x , y )Q( x , y)=
∂ F ( x , y)
∂ y

となるならば、(A1)の解は定数 C により F ( x , y)=C となる。 u (x , y ) を積分因子という。

u (x , y )=1 の時(A1)は完全微分形という。2 変数関数の場合に積分因子が存在することを説明する。

[定義]
f (x , y ) が x , y に関する偏導関数を持ち、その偏導関数が連続である時、 f (x , y ) を C1

級という。

B 偏微分の交換可能性（シュワルツの定理）

2 変数関数 f (x , y ) について (a ,b)∈D なる領域 D で
f x( x , y) , f y (x , y ) , f x y ( x , y) が存在し、 f x y は (a ,b) で連続ならば
f y x (a ,b) が存在して f x y (a ,b)= f y x (a ,b)

[系]  f x y(x , y) , f y x(x , y) が存在して、共に連続関数ならば f x y( x , y)= f y x (x , y)

[証明]
g ( x , y)= f ( x , y)− f (x ,b) (B1) 

とおくと平均値の定理により 0≤θk≤1 が存在して
g (a+h ,b+k )−g (a ,b+k ) = h g x (a+θk h ,b+k ) = h { f x (a+θk h ,b+k )− f x (a+θk h ,b)}

さらに y 変数についての平均値の定理により 0≤θ ' h , k≤1 が存在して
= h { f x (a+θk h ,b+k )− f x (a+θk h ,b)} = h k { f x y (a+θ k h ,b+θ ' h , k k )} (B2)

偏微分の定義より

f y (a+h ,b)= lim
k→0

f (a+h ,b+k )− f (a+h ,b)
k

=lim
k→0

g (a+h ,b+k )
k (B3)

f y (a ,b)= lim
k→0

f (a ,b+k )− f (a ,b)
k

= lim
k→0

g (a ,b+k )
k (B4)

(B2) (B3) (B4)より
f y(a+h ,b)− f y (a ,b)

h
= lim

k →0

g (a+h ,b+k )−g (a ,b+k )
hk

= lim
k →0

hk f x y (a+θ k h ,b+θ ' h , k k )

hk
= lim

k →0
f x y (a+θk h ,b+θ ' h ,k k )

f x y は (a ,b) で連続なので

f y x(a ,b)=lim
h→0

f y (a+h ,b)− f y(a ,b)

h = lim
h→0

lim
k→0

f x y(a+θk h ,b+θ ' h , k k )  

= lim
(h , k) →(0 , 0)

f x y(a+θk h ,b+θ ' h ,k k ) = f x y (a ,b)

証明終わり
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C 陰関数定理

関数の表示法として陽関数 y= y (x ) と陰関数 F ( x , y)=0 がある。

陽関数から陰関数への変換は常に可能で、例えば F ( x , y)= y (x) – y とすればよい。

陰関数から陽関数への変換は常に可能とは限らないが、その十分条件を与えるのが、以下の定理である。

F ( x , y) が (a ,b)∈D なる領域 D で連続かつ F y( x , y) が存在して、 F (a ,b)=0 , F y(a ,b)≠0

ならば a∈A なる開区間 A を定義域とする連続関数 f (x ) について

(C1)  b= f (a) , F ( x , f (x ))=0 となる f (x ) がただ 1 つ存在する。

(C2) F x (a ,b) が存在するならば f (x ) は x=a で微分可能で f ' (a)=−
F x (a ,b)

F y (a ,b)

(C3) D で F ( x , y) の偏導関数が存在し、それらが連続関数ならば

A で f (x ) の導関数が存在し、 f ' ( x)=−
F x (x , f ( x))

F y ( x , f ( x))

[C1 の証明] F y(a ,b)>0 と仮定しても一般性を失わない。
F y( x , y) の連続性より a∈A ,b∈B となる開区間 A ,B が存在して (x , y )∈A×B , F y( x , y)>0

x∈A の時 F ( x , y) は y∈B に関して単調増加である。
F (a , b)=0  より y1 , y2∈B が存在して, y1<b< y2 , F (a , y1)<0 (C4) かつ F (a , y2)>0 (C5)

 また単調増加性から F ( x , y1)=F ( x , y2) ならば y1= y2 (C6)

F ( x , y) の連続性より

(C4) より a∈A1 , y1∈B1 なる開区間 A1 , B1 が存在して (x , y )∈A1×B1 , F ( x , y)<0 (C4')
(C5) より a∈A1 , y2∈B2 なる開区間 A2 , B2 が存在して (x , y )∈A2×B2 , F ( x , y)>0 (C5')
a∈A1 , a∈A2 だから A3=A1∩A2≠∅

(C4') (C'5) と中間値の定理より x∈A3 に対して F ( x , y3)=0 となる y3∈B が存在する。

(C6) より、この y3 はただ 1 つ存在するから
y3= f (x ) と定義すると F ( x , f (x ))=0 , F (a , f (a ))=F (a ,b)=0 より f (a )=b

 任意の α∈A3 に対して F ( x , y) の連続性より
F (α , lim

x→α
f (x )) = F ( lim

x→α
x , lim

x→α
f ( x)) = lim

x→α
F (x , f (x )) = 0 = F (α , f (α))

 (C6)より lim
x→α

f (x )= f (α) よって f (x ) は連続である。

証明終わり

[C2 の証明] k= f (a+h)− f (a)= f (a+h)−b とおく。

F y( x , y) による平均値の定理より F (a+h ,b+k )−F (a+h ,b)=k F y (a+h ,b+θ k )

 → F (a+h ,b+k )=F (a+h , f (a+h))=0 より F (a+h , b)=−k F y (a+h ,b+θ k ) (C7)

F x (a ,b) が存在するから F (a+h ,b)−F (a ,b)=h F x (a ,b)+h ε , lim
h→0

ε=0

 → F (a ,b)=0 より F (a+h , b)=h F x (a ,b)+hε (C8)

(C7) (C8)より −k F y (a+h ,b+θ k )=h F x (a ,b)+h ε →
k
h
=−

F x (a ,b)+ε

F y(a+h ,b+θ k )

f ' (a) = lim
h→0

f (a+h)− f (a )
h

= lim
h→0

k
h

= lim
h→0

−
F x (a ,b)+ε

F y (a+h ,b+θ k )
= −

F x(a ,b)

F y(a ,b)

証明終わり

[C3 の証明] [C2 の証明]と同様である。
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D 全微分
f (x , y ) が領域 D で偏微分可能とする。

(a ,b)∈D に対して Δ f= f (a+Δ x ,b+Δ y)− f (a ,b) と定義する。

Δ f= f x Δ x+ f y Δ y+ε （ f x=
∂ f (a ,b)
∂ x , f y=

∂ f (a ,b)
∂ y ）かつ lim

(Δ x , Δ y)→(0 ,0)

ε

√(Δ x)2
+(Δ y)2

=0

が成り立つとき、 f (x , y ) は (a ,b) で全微分可能という。

f x Δ x+ f y Δ y を f の全微分といい、 d f = f x d x+ f yd y と書く。

[全微分の定理]  恒等式 d f =0 が成立ならば、定数 C により恒等式 f (x , y )=C が成立する。

[証明]
恒等式 d f =0 → f x Δ x+ f y Δ y = 0→恒等式 f x=0 かつ f y=0

f x=0 より f (x , y )=C ( y)

この両辺の y による偏導関数は f y=
d C ( y)
d y

f y=0 だから
d C ( y)
d y

=0 → C ( y)=C  (定数）

∴ f (x , y )=C  （定数）

証明終わり

定義の意味を考える。一変数関数 f (x ) について、その微分係数 f ' (a)= lim
Δx →0

f (a+Δ x )− f (a)
Δ x より

f ' (a)=
f (a+Δ x )− f (a )

Δ x
+δ かつ lim

Δx→0
δ=0

Δ f= f (a+Δ x)− f (a) とおいて変形すると

Δ f= f ' (a )Δ x+ε （ ε=−δ Δ x ）かつ lim
Δx→0

ε
Δ x

= lim
Δx→0

(−δ)=0

[定理／全微分可能であるための十分条件]

f (x , y ) が領域 D で偏微分可能かつ
∂ f
∂ x ,

∂ f
∂ y がともに連続ならば、 f は全微分可能である。

[証明] 補題：2 変数関数の平均値の定理より

f (a+Δ x ,b+Δ y )− f (a ,b)= f x (a+θ Δ x ,b+Δ y )Δ x+ f y (a , b+θ Δ y )Δ y (D1)

f x , f y の連続性より f x (a+θ Δ x ,b+Δ y )= f x(a ,b)+ε1 , f y (a ,b+θ Δ y)= f y(a ,b)+ε2 (D2)

とおくと lim
Δx→0

ε1= lim
Δx→0

ε2=0

(D2)を(D1)に代入して f (a+Δ x ,b+Δ y )− f (a ,b)= f x (a ,b)Δ x+ f y (a ,b)Δ y+ε1 Δ x+ε2 Δ y

Δ x

√(Δ x )2
+(Δ y )2

,
Δ x

√(Δ x)2
+(Δ y)2

≤1 より lim
(Δ x , Δ y)→(0 ,0)

ε1 Δ x+ε 2 Δ y

√(Δ x)2
+(Δ y)2

≤ lim
Δx→0

ε1+ lim
Δ y→0

ε2=0

証明終わり
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[補題 1　／　2 変数関数の平均値の定理]
f (x , y )  が (a ,b)∈D なる領域 D で偏微分可能ならば 0<θ<1 が存在して

f (a+h ,b+k )− f (a ,b)=h f x (a+θ h ,b+k )+k f y(a ,b+θ k )

[証明]
g (t )= f (a+h t , b+k )+ f (a ,b+k t ) とおくと g は [0 ,1] で微分可能。

1 変数関数の平均値の定理より g (1)−g (0)=g ' (θ ) (1)

g (1)= f (a+h ,b+k )+ f (a ,b+k ) (2)
g (0)= f (a , b+k )+ f (a ,b) (3)

g ' (t)= lim
Δ t →0

g (t+Δt)−g (t )
Δt

 = lim
Δt→0

{ f (a+h( t+Δt) , b+k )+ f (a ,b+k (t+Δ t))}−{ f (a+h t ,b+k )+ f (a ,b+k t)}
Δt

 = lim
Δt→0

h
f (a+h t+h Δ t , b+k )− f (a+h t ,b+k )

h Δt
+k

f (a ,b+k t+k Δt)− f (a ,b+k t )
k Δt

= h f x (a+h t ,b+k )+k f y (a ,b+k t) (4)

(2)(3)(4)を(1)に代入して f (a+h ,b+k )− f (a ,b)=h f x (a+θ h ,b+k )+k f y(a ,b+θ k )

証明終わり

E 微分方程式の解の存在と一意性定理

微分方程式の初期値問題
d y
d x

= f ( x , y) , x=a , y=b

これに、解がただひとつ存在するための十分条件は

① f (x , y ) は (x , y ) ;∣x∣≤a ,∣y – c∣≤b で連続かつ有界

②  ある正の定数 K が存在して ∣ f ( x , y1)− f (x , y2)∣≤K∣y1 , y2∣ （Lipschitz の条件）

証明は、微分方程式論による。

F 完全微分形の微分方程式

微分方程式
d y
d x

=−
P (x , y)
Q (x , y ) ⇔ P (x , y )d x+Q(x , y )d y=0 （ Q≠0 , 初期条件 x=a , y=b ) ( A1 )

ここで P (x , y ) , Q( x , y) は x , y に関する偏導関数をもち、かつ偏導関数は連続とする。

ある関数 F ( x , y) が存在して

P (x , y )=
∂ F (x , y )
∂ x , Q( x , y)=

∂ F ( x , y)
∂ y

となるとき、微分方程式を完全微分形という。この時、全微分の定理 により、微分方程式の解は、定数 C に

より、次の式で与えられる。

F ( x , y)=C
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[完全微分形の必要十分条件]
微分方程式(A1)が完全微分形となるための必要十分条件は次式が成立することである。

∂ P (x , y )
∂ y

=
∂ Q(x , y )
∂ x

[必要性の証明]  P ,Q の偏導関数が存在して連続だから P y=F x y , Q x=F y x が存在して連続

シュワルツの定理より P y=F x y=F y x=Q x

[十分性の証明]

F ( x , y)=∫
a

x

P (s , b)d s+∫
b

y

Q( x , t)d t (F1)

と定義する。補題／微分と積分の順序交換より

∂ F
∂ x

=P( x ,b)+
d
d x

∫
b

y

Q( x , t)d t = P (x ,b)+∫
b

y
∂
∂ x

Q( x , t)d t = P (x ,b)+∫
b

y
∂
∂ t
P( x , t)d t

　= P (x ,b)+P (x , y)−P (x ,b) = P (x , y )

∂ F
∂ y

=
d
d y

∫
b

y

Q( x , t)d t = Q( x , y)  

証明終わり

[補題 2　／　微分と積分の順序交換]

f (x , y ) , f y (x , y ) が a≤x≤b , c≤y≤d で連続ならば
d
d y

∫
a

b

f ( x , y)d x=∫
a

b
∂
∂ y

f ( x , y)d x

[証明]

g ( y )=∫
a

b

f y (x , y )d x とおけば [c ,d ] で連続だから積分順序交換が可能である。

∫
c

y

g ( t)d t = ∫
c

y

{∫
a

b

f y (x , t)d x}d t = ∫
a

b

{∫
c

y

f y (x , t)d t}d x = ∫
a

b

( f ( x , y)− f (x , c ))d x

両辺を y で微分して与式を得る。

証明終わり

[完全微分形の解と陰関数の関係]
完全微分形 F x d x+F y d y=0 (初期値 F (a ,b)=C )の解 F ( x , y)=C , F y(a ,b)≠0 に対して

G( x , y)=F (x , y )−C とおくと

G(a , b)=F (a ,b)−C=C – C=0 , G y (a ,b)=F y(a , b)≠0 だから

G の陰関数 f (x ) が存在して G( x , f ( x))=0 ,
d f
d x

=−
G x

G y

⇒ F ( x , f (x ))=C ,
d f
d x

=−
F x

F y
(F2)

(F2)は F x d x+F y d y=0 から
d y
d x

=−
F x

F y
へ変形可能であることの数学的証明となっている。

b が変化すると F (a ,b)=C により C が変化し、 F ( x , f (x ))=C を満たす f (x ) も変化する。
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G 積分因子の存在性

微分方程式 P (x , y )d x+Q(x , y )d y=0 ⇔
d y
d x

=−
P (x , y)
Q (x , y ) （ Q≠0 初期条件 x=a , y=b ）　(A1)

(G1) P (x , y ) , Q( x , y) は x , y に関する偏導関数が存在し、かつ連続関数である。

(G2) 微分方程式(A1)にはただ 1 つの解が存在する。

(G1)かつ(G2)ならば(A1) を完全微分形にするための積分因子 u (x , y ) が存在する。

∂(u P)

∂ y
=
∂ (uQ)

∂ x

[証明]
(G2)より微分方程式(A1)を満たすただひとつの解を y= f (x ) とすると b= f (a) である。

F ( x , y)= f (x)− y  と置くと

F (a ,b)= f (a)−b=0 (G3)
∂ F
∂ x

=
d f (x )
d x

=
d y
d x (G4)

∂ F
∂ y

=−1≠0 (G5)

(G3)(G5)より F ( x , y) は陰関数定理の十分条件を満たす。

(G4)(G5)より
F x(x , y )

F y(x , y )
=−

d y
d x ⇒

d y
d x

=−
F x (x , y )

F y (x , y )
(G6)

(G4)(G5)より

F x y=
∂
∂ y (

d f (x)
d x )=0

F y x=
∂
∂ x

(−1)=0

⇒ F x y=F y x (G7)

(A1)と(G6)より
F x(x , y )

F y(x , y )
=
P( x , y)
Q (x , y ) ⇒

F x (x , y )

P
=
F y (x , y)

Q
=u( x , y) とおくと F x=u P , F y=uQ (G8)

(G7)(G8)より
∂(u P)

∂ y
=F x y=F y x=

∂(uQ)

∂ x
証明終わり

Copyright Yuuichi Takaku 2023


