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自然対数の底(ネイピア数) e=2.71828⋯  の存在証明

この稿の目的は数列 an=(1+
1
n
)
n

(n=1 ,2 ,⋯) の極限値が存在することの解説である。

次の十分条件を示す。(実数の公理と呼ばれる。)

 「☆ an≤an+1≤α(n=1 ,2 ,⋯)  ならば 数列 an(n=1,2 ,⋯) は極限値を持つ」

これは a1≤a2≤⋯≤an≤an+1≤⋯≤α より an  の増加は α の手前で止まることを意味する。

同時にその極限値を計算する式を証明する。 lim
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とおく。 en<en+1<3 を以下で証明する。 en<en+1 は明らかである。
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以上より en は極限値を持つ。
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 (2)an<an+1 の証明
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（１）（２）　より an は極限値を持ち lim
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以下に計算結果を示す。
n an en
4 2.4414062 2.7083333
5 2.4883200 2.7166666
6 2.5216263 2.7180555
7 2.5464996 2.7182539
8 2.5657845 2.7182787

 

 

an>an – 1 の別証明

f (x )=(1−x)n−(1−n x ) (0<x<1)  とおく。

このとき 0<1−x<1 ⇒ 0<(1−x)n<1 である。

f ' ( x)=−n (1−x)n−1
+n=n(1 – (1−x)n−1

)>0
0<x<1 では f (x ) は単調増加

f (0)=0 より 0<x<1 では f (x )>0 ⇒ (1−x)n>1 – n x (0<x<1)
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よって証明された。
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