
整数の性質
更新日 2023 年 3 月 21 日

定義

整数 a , b , k の間に a=b k の関係がある時、 a を b の倍数、 b を a の約数という。

整数 a ,b , c , k1 , k2 , a=b k 1 かつ b=c k 2 ならば a=c(k1 k2) だから、次の推移律が成立する。

[推移律] a が b の倍数（約数）かつ b が c の倍数（約数）ならば a は c の倍数（約数）である。

整数 a1 , a2 ,⋯, an に共通の倍数を公倍数、共通の約数を公約数という。

 正の公倍数の中で最小のものを最小公倍数という。 LCM (a1 , a2 ,⋯, an) と書く。

 正の公約数の中で最大のものを最大公約数という。 GCD(a1 , a2 ,⋯, an) と書く。

証明のためのツールとして、整数 a1 , a2 ,⋯, an に対する集合を次のように決める。

M (a ) = {x ; xは aの倍数} , M (a1 , a2 ,⋯, an) = {x ; xは a1 , a2 ,⋯, anの公倍数}

D(a) = {x ; xは aの約数} , D(a1 , a2 ,⋯, an) = {x ; xは a1 , a2 ,⋯, anの公約数}

定義から

M (a1 , a2 ,⋯, an) = M (a1)∩M (a2)∩⋯∩M (an)

D(a1 , a2 ,⋯, an) = D(a1)∩D (a2)∩⋯∩D(an)

§A 整数の割り算

[A1 わり算における商と余り]

任意の整数 m ,自然数 n に対して、(A1)を満たす整数 Q [商], 自然数 r [余り]がただ一つ存在する。

m=Q n+r かつ 0≤r<n (A1)

[存在の証明]　 q≤
m
n

となる整数 q の中で最大のものを Q とする。

Q≤
m
n

<Q+1 ⇒ Qn≤m<Q n+n ⇒ 0≤m–Qn<n ⇒ r=m−Qn  とおくと 0≤r<n

[一意性の証明]　(A1)を満たす (Q ,r ) と (Q ' , r ' ) があるとする。

m=Q n+r 0≤r<n かつ m=Q ' n+r ' 0≤r '<n ⇒ (Q ' – Q)n=r−r ' かつ −n<r – r '<n

  ⇒ −n<(Q ' – Q)n<n ⇒ −1<Q'−Q<1 ⇒ Q '=Q ⇒ r=r '

（証明終わり）

[A2 ユークリッドの互除法]  (A1) において D(m ,n)=D(n , r ) ( m ,n の公約数は n , r の公約数 )

証明

x∈D(m ,n) ⇒ m=n1 x ,n=n2 x ⇒ r=m−Q n=(n1–Q n2) x ⇒ x∈D(n , r ) ⇒ D(m ,n)⊆D(n , r )

x∈D(n , r ) ⇒ n=n3 x , r=n4 x ⇒ m=Q n+r=(Qn3+n4) x ⇒ x∈D(m ,n) ⇒ D(n , r )⊆D(m ,n)

[A3 最大公約数を求めるアルゴリズム]  最大公約数を求める２つの自然数を a ,b とする。

 数列 an を次のように定義する。 a1=a , a2=b

 an , an+1 に対して [A1]より an=Q an+1+r , 0≤r<an+1 となる r がだた一つ存在する。

 r>0 の時, an+2=r

 r=0 の時, an+1 が求める最大公約数である。

証明

GCD(an , an+1)=GCD(an+1 , an+2) ⇒ GCD(a1 , a2)=GCD(an , an+1) ⇒ r=0 で GCD(an , an+1)=an+1
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§B 最小公倍数と最大公約数

整数 a ,b に関して

[B1 最小公倍数の性質] M (a ,b)=M (LCM (a ,b)) （ a , b の公倍数は a ,b の最小公倍数の倍数。）

[B2 最大公約数の性質] D(a ,b)=D(GCD (a ,b)) （ a ,b の公約数は a ,b の最大公約数の約数。）

[B3] a×b=LCM (a ,b)×GCD(a ,b)

[B4] LCM (c a , c b)=∣c∣LCM (a ,b) , GCD(c a , c b)=∣c∣GCD (a ,b)

[B1 の証明]

a ,b の公倍数を m , a ,b の最小公倍数を m0 とする。

a ,b は共に m ,m0 の公約数(b1)でもある。

割り算の性質より m=Q m0+r ,0≤r<m0 (b2) となる整数 Q ,自然数 r がただ一組存在する。

(b1)とユークリッドの互除法より a ,b は共に r の約数であり、 r は a ,b の公倍数となる。

もし r>0 と仮定すると m0 の最小性から r≥m0 となり(b2)に矛盾する。

よって r=0 であり m=Q m0 ⇒ M (a ,b)⊆M (m0)

これと、推移律から M (m0)⊆M (a ,b) よって M (a ,b)=M (m0)

（証明終わり）

[B2 と B3 の証明]

a ,b の最小公倍数を m0 とする。

a b は a ,b の公倍数であるから、最小公倍数の性質より a b は m0 の倍数である。

よって、自然数 d 0 により a b=d 0m0 (b3) ⇒ d 0=GCD(a ,b) を示せば[B3]が成立する。

m0 は a ,b の公倍数だから、整数 k a , k b により、 m0=k aa=kbb (b4)

(b4)を(b3)に代入すると a b=d 0 k aa=d 0 kbb ⇒ a=d 0 k b , b=d 0 k a
⇒ d 0 は a ,b の公約数である。

d が a ,b の公約数とすると、整数 na , nb により a=nad , b=nbd (b5)

m=
a b
d

とおくと(b5)より m=nab=a nb

⇒ m は a , b の公倍数である。

最小公倍数の性質から、整数 k により m=k m0 ⇒
ab
d

=k
a b
d 0

⇒ d 0=k d

d 0 は a ,b の公約数であり、すべての正の公約数を約数にもつので、公約数の中で最大になる。

（証明終わり）

[B4 の証明]

x∈M (c a , c b) ⇔整数 i1 , i2 により x=i1(ca )=i2(cb)=c (i1a)=c (i2b) ⇔ x∈cM (a ,b)

M (c a , cb)=cM (a ,b) ⇒両辺の正の最小値は一致するから LCM (c a ,c b)=∣c∣LCM (a ,b)

[B3]より LCM (c a ,c b)GCD(ca , c b) = c a×c b = c2 LCM (a ,b)GCD (a ,b)
= ∣c∣2 LCM (a ,b)GCD(a ,b) = ∣c∣LCM (ca , c b)GCD(a ,b)

⇒ ∣c∣GCD(a ,b)=GCD (ca , cb)

（証明終わり）
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[最小公倍数および最大公約数の性質その２]

整数 a1 , a2 ,⋯, an ,⋯ に関して

[B5] 漸化式 m1=a1 , mn+1=LCM (mn , an+1) と定義する⇒[B5-1] M (a1 , a2 ,⋯, an)=M (mn)

 [B5-2] mn=LCM (a1 , a2 ,⋯, an) ( a1 , a2 ,⋯, an の公倍数は a1 , a2 ,⋯, an の最小公倍数の倍数。)

[B6] 漸化式 d 1=a1 , d n+1=GCD(d n , an+1) と定義する⇒[B6-1] D(a1 , a2 ,⋯, an)=D(d n)

 [B6-2] d n=GCD(a1 , a2 ,⋯, an) ( a1 , a2 ,⋯, an の公約数は a1 , a2 ,⋯, an の最大公約数の約数。)

[B7] LCM (c a1 , c a2 ,⋯, c an)=∣c∣LCM (a1 , a2 ,⋯, an)  

[B8] GCD(ca1 , c a2 ,⋯, c an)=∣c∣GCD(a1 , a2 ,⋯ , an)

[B5 の証明]

n=2 の時 m2=LCM (m1 , a2)=LCM (a1 , a2) [B1]より M (a1 , a2)=M (m2) [B5-1]が成立。

n=k の時、[B5-1]が成立と仮定する。 M (a1 , a2 ,⋯, ak )=M (mk)

M (a1 , a2 ,⋯, ak , ak+1) = M (a1 , a2 ,⋯, ak )∩M (ak+1) = M (m k)∩M (ak+1) = M (m k , ak+1)

  = M (LCM (mk , a k+1)) = M (m k+1) ⇒ n=k+1 の時にも[B5-1]が成立

mn は a1 , a2 ,⋯, an の公倍数であり a1 , a2 ,⋯, an の公倍数は mn の倍数である。

したがって mn は a1 , a2 ,⋯, an の正の公倍数の中で最小であり、[B5-2]が成立。

[B6 の証明]

n=2 の時、 d 2=GCD(d 1 , a2)=GCD (a1 , a2) [B2]より D(d 1 , a2)=D(d 2) [B6-1]が成立。

n=k の時、[B6-1]が成立と仮定する。 D(a1 , a2 ,⋯, ak )=D(d k)

D(a1 , a2 ,⋯, ak , ak+1) = D(a1 , a2 ,⋯, ak )∩D(a k+1) = D(d k )∩D(ak+1) = D(d k , ak+1)

= D(GCD (d k , ak+1)) = D(d k+1) 　⇒ n=k+1 の時にも[B6-1]が成立

d n は a1 , a2 ,⋯, an の公約数であり a1 , a2 ,⋯, an の公約数は d n の約数である。

したがって d n は a1 , a2 ,⋯, an の正の公約数の中で最大であり、[B6-2]が成立

[B7 の証明]
x∈M (c a1 , c a2 ,⋯, c an)

⇔整数 i1 , i2 ,⋯, in により x=i1(ca1)=i2(c a2)=⋯=in(can)=c (i1a1)=c( i2a2)=⋯=c (inan)

⇔ x∈cM (a1 , a2 ,⋯ , an)

∴ M (c a1 , ca2 ,⋯, c an)=cM (a1 , a2 ,⋯, an)

⇒両辺の正の最小値は一致するから LCM (c a1 , c a2 ,⋯, c an)=∣c∣M (a1 , a2 ,⋯, an)

（証明終わり）

[B8 の証明] c>0 の場合に数学的帰納法で証明する。

n=2 の時[B4]より[B8]は成立。

n=k の時[B8]が成立と仮定する。漸化式より

GCD(c a1 , c a2 ,⋯, c ak , cak+1) = GCD(GCD(ca1 , c a2 ,⋯ ,c ak ) , c ak+1)

= GCD(c GCD(a1 , a2 ,⋯, ak ) , c ak+1) = cGCD (GCD(a1 , a2 ,⋯, ak ) , ak+1) = cGCD (a1 , a2 ,⋯ , ak , a k+1)

n=k+1 の時にも[B8]が成立する。

c≤0 の時、定義から GCD(c a1 , c a2 ,⋯, c an) = GCD(∣c∣a1 ,∣c∣a2 ,⋯,∣c∣an) = ∣c∣GCD(a1 , a2 ,⋯, an)

（証明終わり）
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§C 演算による最小公倍数および最大公約数の計算

 自然数 a ,b , c について演算 a∨b=LCM (a ,b) , a∧b=GCD (a ,b) と定義する。

  単位元 a∨1=a [C1-1]

  零元 a∧1=1 [C2-1]

  交換法則 a∨b=b∨a [C1-2]

  交換法則 a∧b=b∧a (C2-2)

  結合法則 (a∨b)∨c=a∨(b∨c) [C1-3]

  結合法則 (a∧b)∧c=a∧(b∧c) (C2-3)

  積との分配法則 (a c)∨(b c)=(a∨b)c [C1-4]

  積との分配法則 (a c)∧(b c)=(a∧b)c [C2-4]

  モジュラー律 (a∨b)∧a=a , (a∧b)∨a=a [C3]

　簡約律 a b∨a=a b , a b∧a=a [C4]

[C1-2 の証明] a∨b=LCM (a ,b)=LCM (b ,a )=b∨a

[C2-2 の証明] a∧b=GCD (a ,b)=GCD (b ,a)=b∧a

[C1-3 の証明] M ((a∨b)∨c) = M (a∨b , c) = M (a∨b)∩M (c) = M (a ,b)∩M (c) = M (a ,b , c)

= M (a )∩M (b , c) = M (a )∩M (b∨c) = M (a ,b∨c) = M (a∨(b∨c))

∴ M ((a∨b)∨c) = M (a ,b ,c) = M (a∨(b∨c)) より各集合の正の最小要素は一致する。

[C2-3 の証明] D((a∧b)∧c) = D(a∧b , c) = D(a∧b)∩D(c ) = D(a ,b)∩D(c) = D(a ,b , c)

= D(a)∩D(b , c) = D(a)∩D(b∨c ) = D(a ,b∨c) = D(a∨(b∨c))

∴ D((a∨b)∨c) = D(a ,b , c) = D(a∨(b∨c)) より各集合の正の最小要素は一致する。

[C1-4 の証明] [B4]より (a c)∨(b c)=LCM (ac ,bc )=LCM (a ,b)c=(a∨b)c

[C2-4 の証明] [B4]より (a c)∧(b c)=GCD(ac ,b c)=GCD(a ,b)c=(a∧b)c

[C3 の証明] 

a∨b=LCM (a , b) は a の倍数だから a∨b=k a
(a∨b)∧a=(k a )∧a=(k∧1)a=1×a=a

a∧b=GCD (a ,b) は a の約数だから a=k (a∧b)
(a∧b)∨a=(a∧b)∨(k (a∧b))=(1∨k )(a∧b)=k×(a∧b)=a

[C4 の証明] a b∨a=a (b∨1)=a b , a b∧a=a (b∧1)=a×1=a

証明終わり

§D 互いに素な整数

[定義] 自然数 a ,b の最大公約数が 1 の時, a ,b を互いに素という。

[互いに素な自然数の性質]　自然数 a , b について以下のように成立する。

[D1] a , b が互いに素であり、 a ' が a の約数、 b ' が b の約数ならば a ' , b ' も互いに素である。

[D2] a , b が互いに素ならば a ,b の最小公倍数は a b である。

[D3] 自然数 a ,b に対して、互いに素な自然数 a ' , b ' が存在して

a=a '×GCD(a ,b) , b=b '×GCD(a , b) , LCM (a ,b)=a '×GCD(a ,b)×b '

[D4] a , b は互いに素とする。 a が bc の約数ならば a は c の約数である。

[D5] a , b が互いに素ならば任意の自然数 c について GCD(ab ,c)=GCD(a , c)GCD(b , c)

[D6] a , b , c のどの 2 つも互いに素ならば a b , c も互いに素である。

[D6 -系] a1 , a2 ,⋯, an のどの 2 つも互いに素ならば  a1 , a2 ,⋯, an の最小公倍数は a1a2⋯an
      GCD(a1a2⋯an , b)=GCD(a1 ,b)GCD(a2 , b)⋯GCD(an , b)
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証明

[D1 の証明] d=GCD(a ' , b ' ) とすると推移律より d は互いに素な a ,b の公約数。よって d=1

[D2 の証明] a , b は互いに素だから GCD(a ,b)=1 ⇒ a b=LCM (a ,b)×GCD(a ,b)=LCM (a ,b)

[D3 の証明] d 0=GCD(a ,b) , m0=LCM (a ,b) とおくと、 a=a ' d 0 , b=b ' d 0
 d 0=GCD(a ,b)=GCD(a ' d 0 , b ' d 0)=GCD(a ' ,b ' )d 0 ⇒ GCD(a ' , b ' )=1 ⇒ a ' , b ' は互いに素。

  [D2]より m0=LCM (a ,b)=LCM (a ' d 0 ,b ' d 0)=LCM (a ' ,b ' )d 0=a ' b ' d 0
[D4 の証明] a , b は互いに素だから[D2]より LCM (a ,b)=ab

 a が bc の約数⇒ bc は a , b の公倍数⇒整数 k により bc=k×LCM (a ,b)=k ab ⇒ c=k a

[D5 の証明] ca=GCD(a , c) , cb=GCD(b , c ) とおく。

  ( 1 ) c が a b の約数の場合。自然数 k により a b=k c (d1)

  a , c について[D3]より、互いに素な a ' , c ' が存在して a=a ' ca , c=c ' ca

    ⇒
a
c
=
a '
c '

⇒ a '=
ac '
c

⇒(d1)より a ' b=
ab c '
c

=
k cc '
c

=k c '

    ⇒ c ' は a ' b の約数である。 c ' ,a ' は互いに素だから、[D4]より c ' は b の約数。

    ⇒ c ' は b , c の公約数となる。最大公約数の性質より c ' は cb の約数。(d2)

  a ,b は互いに素であり、 ca は a の約数、 cb は b の約数⇒[D1]より ca , cb も互いに素。

   これと cb は c=c ' ca の約数だから cb は c ' の約数。(d3)

   (d2) (d3)より cb=c '

  ( 2 ) c が一般の自然数の場合。 c '=GCD(a b , c) は a b の約数⇒ c '=GCD(a , c ')GCD(b , c ' )

   結合律と簡約律より GCD(a , c ' ) = a∧c ' = a∧(a b∧c)=(a∧ab)∧c=a∧c = GCD(a , c)

 GCD(b , c ' ) = b∧c ' = b∧(ab∧c) = (b∧ab)∧c=b∧c = GCD(b , c) よって[D5]が成立。

[D6 の証明] d=GCD(a b ,c) とおくと [D1]より

 a , c が互いに素⇒ a , d が互いに素

 b , c が互いに素⇒ b , d が互いに素

  [D5]より a ,b が互いに素⇒ d=GCD(a ,d )×GCD (b ,d )=1×1=1

[D6-系の証明]　  漸化式 m1=a1 , mn+1=LCM (mn , an+1) において

   命題 P mn , an+1 , an+2 ,⋯ のどの２つも互いに素を帰納法で示す。

  n=1 の時 m1 , a2 , a3 ,⋯=a1 , a2 , a3 ,⋯ のどの２つも互いに素だから成立

  n=k の時、成立と仮定すると mk , ak+1 , ak+2 ,⋯ のどの２つも互いに素

   ⇒ mk+1=LCM (mk , ak+1)=mk ak+1 (d4) かつ [D5]より mk ak+1 , ak+2 ,⋯ のどの２つも互いに素

   ⇒ n=k+1 の時にも成立。

   (d4) mk+1=mk ak+1 より mk=mk –1ak=mk –2ak –1ak=⋯=m1a2a3⋯ak = a1a2a3⋯ak (d5)

   ∴ LCM (a1 , a2 ,⋯, an)=mn=a1a2⋯an

   (d5)より、命題 P を n→k で書き換えると

   命題 P (a1a2⋯ak ) , a k+1 , ak+2 ,⋯, an のどの 2 つも互いに素 

   [D5]より GCD(a1a2⋯an –1an , b) = GCD(a1a2⋯an –1 , b)GCD(an , b)

     = GCD(a1a2⋯an−2 ,b)GCD(an –1 ,b)GCD(an , b)

     = … = GCD(a1a2 , b)⋯GCD (an−1 , b)GCD(an , b)

     = GCD(a1 ,b)GCD(a2 , b)⋯GCD(an−1 , b)GCD(an , b)

（証明終わり）
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§E 素因数

[定義]

2 以上の自然数で、1 とそれ自身以外に約数を持たない自然数を素数という。

2 以上の自然数で、素数でない自然数を合成数という。

自然数 n の約数 p が素数である時、 p を n の素因数という。

[E1 合成数の性質] 合成数を n に対して n=a b , 1<a , b<n となるような自然数 a ,b が存在する。

[E2 ユークリッドの補題]

 自然数 a ,b とする。素数 p が a b の約数ならば p は a の約数、または b の約数

[E3 素因数の性質 1] すべての自然数は素因数を持つ

[E4 素因数の性質２]

自然数 a ,b に共通の素因数が存在するための必要十分条件は GCD(a ,b)>1 である。

（対偶）自然数 a ,b に共通の素因数が存在しないためのの必要十分条件は a ,b が互いに素である。

[E1 の証明]

 合成数 n は a≠1 かつ a≠n であるような約数 a を持つから、自然数 b により n=a b

 1≤b ⇒ a≤ab=n ⇒ a≠n だから a<n

 1<a<n かつ a=
n
b

だから 1<
n
b
<n ⇒ 1<b<n

証明終わり

[E2 の証明]

p が a の約数でないとすれば p ,a の公約数は 1 のみで互いに素[C4]より p は b の約数

[E3 の証明]

自然数 n の 1 以外の約数で 最小のものを p (1< p≤n) とする。

自然数 k により n=p k (d1)

p が合成数と仮定すると p=a b , 1<a< p , 1<b<p (d2)

(d2)を(d1)に代入すると、 n=a bk , 1<a< p
a は n の 1 以外の約数であり、かつ p より小さい。これは p  の最小性に矛盾する。

従って p は素数であり、 n  の素因数である。

[E4 の証明]

[十分性]

a ,b の共通の素因数を p とすると a ,b の公約数だから

 最大公約数の性質より p は GCD(a ,b) の約数である。⇒ gcd (a ,b)≥p>1

[必要性]

素因数の性質１より GCD(a , b) の素因数 p は a ,b  の共通の素因数である。
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[E5 素因数分解の一意性定理] 自然数はただ一通りに素因数分解できる。

[素因数分解の可能性の証明]

自然数 m の素因数の集合を A とすると素因数の性質１より A≠∅

A={p1 , p2 ,⋯, pn} とおく。

p j
k が m の約数となるような自然数 k の中で最大のものを k ( j) とする。

この決め方により p j
k ( j ) は m の約数かつ p j

k ( j )+1 は m の約数ではない。(d1)

m は p1
k (1 ) , p2

k (2 ) ,⋯, pn
k (n) の公倍数である。

p1
k (1 ) , p2

k (2 ) ,⋯, pn
k (n) のどの２つも互いに素だから[D6-系]より

p1
k (1 ) , p2

k (2 ) ,⋯, pn
k (n) の最小公倍数は a= p1

k (1) p2
k(2)

⋯ pn
k (n ) である。

最小公倍数の性質より m は a= p1
e (1) p2

e(2)
⋯ pn

e(n ) の倍数である。

m=k a  とおける。

k>1 と仮定すると、素因数の性質１より k  は素因数 q  を持つ。 k=k ' q
q∈A となるので、 q= p j となる j が存在し、 k=k ' p j  となるので

m=k ' p j a=k ' p1
k(1) p2

k(2 )
⋯ p j

k ( j )+1
⋯ pn

k (n) ⇒ p j
k ( j )+1 は m の約数 

これは(d1)に矛盾する。よって k=1  であり、 m= p1
k(1) p2

k (2)
⋯p j

k ( j)+1
⋯ pn

k (n)

[素因数分解の一意性の証明]

どの 2 つも異なる素数 q1 , q2 ,⋯, qN によって m=q1
c (1)q2

c(2)
⋯qN

c(N ) となるとき

B={q1 , q2 ,⋯, qN } とおく。

すべての j  について q j は m の素因数だから B⊆A (d2)

もし p i∉B となる p i∈A があれば

素因数の性質２より p i  と m=q1
c (1)q2

c(2)
⋯qN

c(N ) は共通の素因数がなく GCD( pi ,m)=1

これは p i が m の素因数であることに矛盾する。

したがって p i(i=1,2,⋯ , n)∈B  ⇒ A⊆B (d3)

(d2)，(d3)より A=B ここで必要なら添え字を付け替えて p j=q j( j=1,2,⋯ , , n) とできる。

k ( j)( j=1 ,2 ,⋯, n) の最大性より k ( j)≥c ( j)( j=1 ,2 ,⋯, n)

もし k ( j)>c ( j) となる j  があると仮定すれば

m= p1
k(1) p2

k (2)
⋯pn

k (n)
> p1

c(1) p2
c(2)

⋯ pn
c (n )

=m となり矛盾⇒すべての j  で k ( j)=c ( j)  
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[E6 約数の素因数分解]

自然数 a ,b について、素因数分解 a = p1
e(1) p2

e (2 )
⋯ pn

e(n) の時、( 1 )は( 2 )の必要十分条件である。

 ( 1 ) b が a の約数

 ( 2 ) b の素因数分解は b = p1
c(1) p2

c (2 )
⋯ pn

c(n) , 0≤c (i)≤e (i) , i=1,2 ,⋯, n

[十分性の証明]　 b の素因数 q は a の素因数でもあるから、ある j  があって q=p j と一致する。

　したがって b の素因数分解は b = p1
c(1) p2

c (2 )
⋯ pn

c(n) , c (i)≥0 , i=1,2 ,⋯, n となる。

d=
a
b

も a  の約数であり、同様に d = p1
d (1) p2

d (2 )
⋯ pn

d (n ) , d (i)≥0 , i=1,2 ,⋯, n

a=b d = p1
c(1)+d (1) p2

c(2)+d (2)
⋯ pn

c(n)+d (n)

 ⇒素因数分解の一意性より e (i)=c (i)+d ( i)≥c (i) , i=1,2 ,⋯, n

[必要性の証明]　 0≤c (i)≤e (i) より d (i)=e(i) – c(i)  とおくと 0≤d (i)≤e(i) , i=1,2 ,⋯, n

d = p1
d (1) p2

d (2 )
⋯ pn

d (n ) とおくと bd=p1
c(1)+d (1) p2

c(2)+d (2)
⋯pn

c(n)+ d (n) = p1
e(1) p2

e(2)
⋯ pn

e(n) = a

[E6-系 約数の個数]

n の素因数分解が n=p1
e(1) p2

e (2 )
⋯pn

e(n) とする。

n の約数の個数は (e (1)+1)(e(2)+1)⋯(e (n)+1)

n の約数の和は
p1
e (1)+1

−1

p1 –1

p2
e(2)+1

−1

p2 –1
⋯
pn
e(n)+1– 1

pn–1

証明

∑
k (1 )=0

e(1)

∑
k (2)=0

e(2)

⋯ ∑
k (n)=0

e(n)

p1
k (1) p2

k(2)
⋯ pn

k (n )
= ∑
k (1)=0

e(1)

p1
k (1) ∑

k(2)=0

e(2)

p2
k (2 )

⋯ ∑
k (n)=0

e(n)

pn
k (n)

=
p1
e (1)+1

−1
p1 –1

p2
e(2)+1

−1
p2 –1

⋯
pn
e(n)+1– 1
pn–1

[E7 最大公約数,最小公倍数の素因数分解]

a∨b の素因数分解を a∨b = p1
e(1) p2

e(2)
⋯ pn

e(n) とする。

a ,b および a∧b は a∨b の約数だから、約数の素因数分解より

a= p1
a (1) p2

a (2)
⋯ pn

a (n) , 0≤a (i )≤e (i) , i=1,2 ,⋯, n

b=p1
b(1) p2

b (2)
⋯ pn

b (n) , 0≤b(i)≤e( i) , i=1,2 ,⋯, n

a∧b= p1
d (1) p2

d (2)
⋯ pn

d (n) , 0≤d (i)≤e( i) , i=1,2 ,⋯, n

この時 e (i)=max (a (i) , b (i)) , d (i)=min(a(i) , b(i)) , i=1,2 ,⋯, n が成立する。

証明

c (i)=min (a (i) , b(i)) , (i=1 ,2 ,⋯, n) , c= p1
c(1) p2

c(2)
⋯pn

c(n) とおく。

 [E6]より a∧b は a ,b の約数だから 0≤d (i)≤a (i) , b(i)  ⇒ d (i)≤min(a( i) , b(i )) , i=1,2 ,⋯, n

 [E6]より c は a , b の公約数であるから a∧b の約数⇒ c (i)≤d (i) , i=1,2 ,⋯, n

 ∴ d (i)=min(a(i) ,b (i)) , i=1,2 ,⋯, n (e1)

a b=(a∧b)(a∨b) に素因数分解を代入⇒ p1
a (1)+b (1) p2

a (2)+b (2)
⋯pn

a (n)+b(n ) = p1
d (1)+e(1) p2

d (2)+e(2)
⋯pn

d (n )+e(n)

⇒素因数分解の一意性より a (i)+b (i)=d (i)+e(i) , i=1,2 ,⋯, n (e2)

一般に a (i)+b (i)=max(a (i) , b(i))+min (a (i ) , b(i)) , i=1,2 ,⋯, n (e3)

(e1)(e2)(e3)より d (i)+e(i)=max(a (i) , b(i))+d (i) ⇒ e (i)=max (a (i) , b(i))
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[E7-系]

分配法則 (a∨b)∧c=(a∧c)∨(b∧c) , (a∧b)∨c=(a∨c)∧(b∨c)

証明

見やすくするため、演算子 a ↑ b = max (a ,b) , a ↓ b = min (a ,b) を定義する。

a≥b の時 a ↑ b = a , a ↓ b = b

−a≤−b だから −a ↑−b = −b = −(a ↓ b)  , −a ↓−b = −a = −(a ↑ b)

 ∴ −(a ↓ b) = −a ↑−b , −(a ↑ b) = −a ↓−b (e4)

a ,b , c の大小関係は 6 通りある。

a≥b≥c の時 (a ↑ b)↓ c=a ↓ c=c , (a ↓ c)↑ (b ↓ c)=c ↑ c=c

a≥c≥b の時 (a ↑ b)↓ c=a ↓ c=c , (a ↓ c)↑ (b ↓ c)=c ↑ b=c

b≥a≥c の時 (a ↑ b)↓ c=b ↓ c=c , (a ↓ c)↑ (b ↓ c)=c ↑ c=c

b≥c≥a の時 (a ↑ b)↓ c=b ↓ c=c , (a ↓ c)↑ (b ↓ c)=a ↑ c=c

c≥a≥b の時 (a ↑ b)↓ c=a ↓ c=a , (a ↓ c)↑ (b ↓ c)=a ↑ b=a   

c≥b≥a の時 (a ↑ b)↓ c=b ↓ c=b , (a ↓ c)↑ (b ↓ c)=a ↑ b=b

 いずれも (a ↑ b)↓ c = (a ↓ c)↑ (b ↓ c) (e5)が成立する。

 (e5)を −a ,−b ,−c に使うと (−a ↑ – b)↓−c = (−a ↓−c)↑(−b ↓−c)

(−a ↑−b)↓−c = −(a ↓ b)↓−c = −{(a ↓ b) ↑ c}  

(−a ↓−b)↑(−b ↓−c) = −(a ↑ b)↑−(b ↑ c) = −{(a ↑ b) ↓(b ↑ c )}

 ∴ (a ↓ b)↑ c = (a ↑ b)↓(b ↑ c) (e6)

a∨b∨c の素因数分解を a∨b∨c = p1
e(1) p2

e (2 )
⋯ pn

e(n) とする。

a ,b , c は a∨b∨c の約数だから約数の素因数分解より

a = p1
a (1 ) p2

a (2)
⋯ pn

a (n) , 0≤a ( j)≤e ( j)

b = p1
b(1) p2

b(2)
⋯ pn

b (n) , 0≤b( j)≤e ( j)

c = p1
c(1) p2

c (2 )
⋯ pn

c(n) , 0≤c ( j)≤e ( j)

素因数分解を (a∨b)∧c= p1
s(1) p2

s (2 )
⋯ pn

s (n ) , (a∧c)∨(b∧c)= p1
t (1) p2

t (2)
⋯ pn

t (n) とする。

 [E7]より s(i)=(a (i)↑ b(i))↓ c(i)=(a (i)↓ c (i))↑(b (i)↓ c(i))=t (i)
(a∨b)∧c=(a∧c)∨(b∧c)

素因数分解を (a∧b)∨c= p1
s(1) p2

s (2 )
⋯ pn

s (n ) , (a∨c)∧(b∨c)= p1
t (1) p2

t (2)
⋯ pn

t (n)

[E7]より s(i)=(a (i)↓ b(i))↑ c(i)=(a (i)↑ c (i))↓(b (i)↑ c(i))=t (i)
(a∧b)∨c=(a∨c)∧(b∨c)

（証明終わり）

 Copyright (C) 2023 　Yuuichi Takaku  All Rights Reserved.


