
惑星軌道

万有引力の法則から惑星軌道を求める。

時間 t 位置 r⃗=( x , y) 速度 v⃗=
d r⃗
d t

加速度 a⃗=
d v⃗
d t

=
d 2 r⃗
d t 2

角速度 ω=
d θ
d t

§A惑星は１つの平面上を運動する。

惑星の速度 v⃗ と惑星に働く万有引力 F⃗ の両方を含む平面を α とすると、惑星は α 上を運動する。

これは「原因が対称性をもつなら、結果も対称性をもつ」という対称性の原理から導かれる。

惑星の運動の場合、運動方向を決める原因は v⃗ と F⃗ であり、結果は惑星の運動方向である。

α に関して系全体を対称移動させると、 v⃗ と F⃗ は元の状態と重なるので対称性をもつ。

もし惑星が α から離れると仮定すると、それは α に関して対称的ではない。これは対称性の原理に矛盾

するので、この仮定は誤りである。よって惑星は α から離れず、その上を運動する。

§B極座標の直交単位ベクトル

惑星は平面上を運動するので、その平面内に直交座標と極座標を決める。

直交座標 (x , y ) から極座標 (r , θ) への変換 ( r=∣⃗r∣=√ x2
+ y 2 x=r cosθ y=r sinθ )のために

e⃗r=(cos θ , sinθ) , e⃗θ=(−sinθ ,cosθ ) を定義する。

∣e⃗r∣=∣e⃗θ∣=1 e⃗r⋅e⃗θ=0 r⃗=(r cosθ , r sin θ)=r e⃗r
d e⃗r
d t

=ωe⃗θ  
d e⃗θ
d t

=−ωer  が成り立つ。

[微分の計算]
d e⃗r
d t

=
d
d t

(cos θ , sin θ)=(−sinθ
d θ
d t
,cosθ

d θ
d t

)=(−ωsin θ ,ωcosθ )=ω e⃗θ  

d e⃗θ
d t

=
d
d t

(−sin θ ,cosθ )=(−cos θ
d θ
d t
,−sin θ

d θ
d t

)=(−ω cosθ ,−ωsin θ)=−ωer  

§C速度と加速度の極座標による表示

速度 　 v⃗=
dr
dt
e⃗r+r ωe⃗θ ・・・(C-1)

加速度 a⃗=(
d 2 r
dt 2

−r ω2
) e⃗r+(2

dr
dt
ω+r

d ω
d t

) e⃗θ ・・・(C-2)

[計算]関数の積の微分より

v⃗=
d r⃗
d t

=
d
d t

(r e⃗r)=
d r
d t
e⃗r+r

d e⃗r
d t

=
d r
d t
e⃗r+r ω e⃗θ ・・・(1)

(1)の第 1 項の微分

d
d t

(
d r
d t
e⃗r)=

d 2 r
d t 2 e⃗r+

d r
d t

d e⃗r
d t

=
d 2 r
d t 2

e⃗r+
d r
d t
ωe⃗θ ・・・(2)

(1)の第 2 項の微分

d
dt

(r ω e⃗θ)=
dr
dt
e⃗θω+r

d e⃗θ
d t
ω+r e⃗θ

d ω
d t

=
dr
dt
ωe⃗θ−r ω

2 e⃗r+r
d ω
d t
e⃗θ =−r ω2 e⃗r+(

dr
dt
ω+r

d ω
d t

) e⃗θ  ・・(3)

(2)(3)より a⃗=
d v⃗
d t

=(
d 2r
d t 2

−r ω2) e⃗r+(2
d r
d t
ω+r

d ω
d t

) e⃗θ   

§D万有引力の法則を解く

万有引力 −
GMm

r 2
e⃗r=m a⃗ に(C-2)を代入して次の連立方程式を得る。 {−

GM
r2 =

d 2 r
d t 2

−r ω2
⋯(D−1)

0=2
d r
d t
ω+r

d ω
d t

⋯(D−2)}
ケプラー第２法則 面積速度 d (

1
2
r 2θ )/dt=一定 を参考に(D-2)の両辺に r をかけて解くと、

0=2 r
dr
dt
ω+r 2 d ω

d t
=
d
dt

(r 2ω) → r 2ω=C (定数) → ω=
C

r2
・・・(1)
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(1)より F を一般の t の関数とすると
d F
d t

=
d F
d θ

d θ
d t

=
d F
dθ
ω=

C

r2

dF
dθ

→
d F
d t

=
C

r 2

dF
dθ

F=r の時 
dr
dt

=
C

r 2

dr
dθ

 F=
d r
d t

の時 
d 2 r
dt 2 =

C
r 2

d
dθ

(
d r
d t

)=
C
r 2

d
dθ

(
C
r2

dr
dθ

)=
C 2

r 2

d
dθ

(
1
r 2

dr
dθ

)  ・・・(2)

(1)(2)を(C-1)に代入すると −
GM
r 2 =

C 2

r 2

d
dθ

(
1
r2

dr
dθ

)−r
C2

r 4 → −
GM

C2
=
d
dθ

(
1

r2

dr
dθ

)−
1
r

・・・(3)

ここで u=
1
r

とおくと 
dr
dθ

=
d (u−1

)

dθ
=−u−2 du

dθ
=−

1
u2

du
dθ

 

(3)に代入して −
GM

C2
=
d
dθ

(u2
(−

1

u2

d u
d θ

))−u →
GM
C 2 =

d 2u
d θ2 +u

この微分方程式の一般解は u=
GM

C 2
+A cosθ+B sin θ ・・・(4)

θ=0  の時 r が最少値と決めると、この時 u は最大になるから θ に関して u は上に凸となる。
d u
d θ

=0 → −Asin 0+B cos 0=0 → B=0

d 2u
d θ 2<0 → −Acos 0 – B sin 0<0 → A>0

(4)に代入して
1
r
=
GM

C2
+A cosθ → r=

1
GM
C 2 +A cosθ

=
1

GM
C2 (1+

C2 A
GM

cosθ )
=

C2

GM

1+
C 2 A
GM

cosθ

e=
C 2 A
GM

, a=
1
A

とおくと r=
e a

1+ecos θ
これは2次曲線の極方程式である。

2次曲線は e によって次の3通りに分けられる。

● 0<e<1 の時、極方程式は楕円を表す。

● e=1 の時、極方程式は放物線を表す。

● 0<e<1 の時、極方程式は双曲線を表す。
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