
ラプラシアンの極座標表示
§A　2 次元の場合

直交座標と極座標の変換 x=R cos φ
y=R sinφ

  
R=√x 2+ y2

φ=tan−1
(
y
x
)

 f (x , y )= f (R cosφ , Rsinφ)= f̂ (R ,φ)

△=
∂2
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●A1 ∂ /∂ x を極座標で表す
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●A2 ∂2 /∂ x2 を極座標で表す　(1-3)より
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●A3 ∂ /∂ y を極座標で表す　
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(2-1)(2-2)を(2)に代入して
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●A4 ∂2/∂ y2 を極座標で表す
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●A5 ∂2 /∂ x2+∂2/ ∂ y2 の極座標表示

(1-4) (2-4)を辺々加える。
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§B　3 次元の場合

変換
x=r sinθ cos φ
y=r sin θ sinφ
z=r cos θ

r=√x2+ y2+z 2

φ=tan−1
(
y
x
)

θ=tan−1(√ x
2
+ y2

z
)

f (x , y , z )= f (r sinθ cosφ , r sin θ sinφ , r cosθ )= f̂ (r ,θ , φ)

Δ=
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∂ x2
+
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+
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∂ z 2
を r , θ , φ  で表示する。

●B1 2 次元の結果から

R=r sinθ と置くと変換は
x=R cos φ
y=R sinφ
z= z

→2 次元の結果から
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次に
z=r cos θ
R=r sin θ

の変換をすると
r=√ z2+R2

θ=tan−1
(
R
z
)

2 次元の場合を

R→ r
x→ z
y→ R
φ→θ

で置き換えることにより
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●B2 ラプラシアンの極座標表示
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(4)(4-1)(4-2)(4-3)(4-4)以上より
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さらに
1
sin θ

∂
∂ θ

(sin θ
∂
∂θ

)=
1
sin θ

(cosθ
∂
∂θ

+sin θ
∂2

∂θ2
)=
cosθ
sin θ

∂
∂ θ

+
∂2

∂ θ2
を(4-5)に代入すると

Δ =
∂2

∂ r 2
+
2
r
∂
∂ r

+
1

r2 sinθ
∂
∂θ

(sin θ
∂
∂θ

)+
1

r2 sin2θ
∂2

∂φ2
　(4-6)
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